In recent times electronic throttles are more and more important in automotive engines so as to achieve better fuel economy, minimum vehicle emission and good drivability. One of the major component inside an automobile engine is throttle valve. The control of electronic throttle is actually the control of movement of plate through which amount of air that enters to the combustion engine is controlled. In this paper, initially, a mathematical model is designed by considering the dynamical behavior of the electronic throttle and further transformed to a state space model. The controller is developed by employing the dynamic surface control (DSC) technique which has been derived from backstepping and sliding mode control techniques. With the help of the simulation results the effectiveness of the proposed controller are shown which prove the validity of the technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.