Time-resolved FTIR spectroscopic studies of the flash photolysis of several 1-(2-nitrophenyl)ethyl ethers derived from aliphatic alcohols showed that a long-lived hemiacetal intermediate was formed during the reaction. Breakdown of this intermediate was rate-limiting for product release. One of these compounds (methyl 2-[1-(2-nitrophenyl)ethoxy]ethyl phosphate, 9) was studied in detail by a combination of time-resolved FTIR and UV-vis spectroscopy. In addition, product studies confirmed clean photolytic decomposition to the expected alcohol, 2-hydroxyethyl methyl phosphate, and the 2-nitrosoacetophenone byproduct. At pH 7.0, 1 degrees C, the rate constant for product release was 0.11 s(-1), very much slower than the 5020 s(-1) rate constant for decay of the photochemically generated aci-nitro intermediate (pH 7.0, 2 degrees C). Time-resolved UV-vis measurements showed that the hemiacetal intermediate is formed by two competing pathways, with fast (approximately 80% of the reaction flux) and slow (approximately 20% of the flux) components. Only the minor, slower path is responsible for the observed aci-nitro decay process. These competing reactions are interpreted with the aid of semiempirical PM3 calculations of reaction barriers. Furthermore, AMSOL calculations indicate that the pK(a) of the nitronic acid isomer formed by photolysis is likely to determine partition into the alternate paths. These unusual results appear to be general for 1-(2-nitrophenyl)ethyl ethers and contrast with a related 2-nitrobenzyl ether that photolyzed without involvement of a long-lived hemiacetal.
The synthesis and characterization of a bifunctional rhodamine dye bearing 2-(iodoacetamido)ethyl substituents on the 3'- and 6'-nitrogen atoms is described. Aspects of the conversion of chloroacetamides to iodoacetamides are discussed, including a remarkably mild dehalogenation of an aromatic haloacetamide in the presence of NaI and camphorsulfonic acid. The bifunctional rhodamine has been designed for two-site, 1:1 labeling of proteins that contain two suitably disposed cysteine residues and is intended to constrain the orientation of the rhodamine absorption and emission dipoles in a predictable relationship to the protein structure.
The photochemistry of naphthols 1, 2, 4, 5 and 9, and phenol 10 has been studied in aqueous solution with the primary aim of exploring the viability of such compounds for naphthoquinone and quinone methide photogeneration, along the lines already demonstrated by our group for phenol derivatives. 1-Naphthol (1) is known to be substantially more acidic than 2-naphthol (2) in the singlet excited state (pKa* = 0.4 and 2.8, respectively) and it was expected that this difference in excited-state acidity might be manifested in higher reactivity of 1-naphthol derivatives for photochemical reactions requiring excited-state naphtholate ions, such as quinone methide formation. Our results show that three types of naphthoquinone methides (26a, 26b, and 27) are readily photogenerated in aqueous solution by irradiation of 1-naphthols. Photolysis of the parent 1-naphthol (1) in neutral aqueous solution gave 1,5-naphthoquinone methide 26a as well as the non-Kekulé 1,8-naphthoquinone methide 26b, both via the process of excited-state (formal) intramolecular proton transfer (ESIPT), based on the observation of deuterium exchange at the 5- and 8-positions, respectively, on photolysis in D2OCH3CN. A transient assignable to the 1,5-naphthoquinone methide 26a was observed in laser flash photolysis experiments. The isomeric 2-naphthol (2) was unreactive under similar conditions. The more conjugated 1,5-naphthoquinone methide 27 was formed efficiently via photodehydroxylation of 4; isomeric 5 was unreactive. The efficient photosolvolytic reaction observed for 4 opens the way to design related naphthol systems for application as photoreleasable protecting groups by virtue of the long-wavelength absorption of the naphthalene chromophore.Key words: photosolvolysis, excited-state intramolecular proton transfer, quinone methide, photorelease, photoprotonation.
Chemotaxis of Escherichia coli toward phosphotransferase systems (PTSs)-carbohydrates requires phosphoenolpyruvate-dependent PTSs as well as the chemotaxis response regulator CheY and its kinase, CheA. Responses initiated by flash photorelease of a PTS substrates D-glucose and its nonmetabolizable analog methyl alpha-D-glucopyranoside were measured with 33-ms time resolution using computer-assisted motion analysis. This, together with chemotactic mutants, has allowed us to map out and characterize the PTS chemotactic signal pathway. The responses were absent in mutants lacking the general PTS enzymes EI or HPr, elevated in PTS transport mutants, retarded in mutants lacking CheZ, a catalyst of CheY autodephosphorylation, and severely reduced in mutants with impaired methyl-accepting chemotaxis protein (MCP) signaling activity. Response kinetics were comparable to those triggered by MCP attractant ligands over most of the response range, the most rapid being 11.7 +/- 3.1 s-1. The response threshold was <10 nM for glucose. Responses to methyl alpha-D-glucopyranoside had a higher threshold, commensurate with a lower PTS affinity, but were otherwise kinetically indistinguishable. These facts provide evidence for a single pathway in which the PTS chemotactic signal is relayed rapidly to MCP-CheW-CheA signaling complexes that effect subsequent amplification and slower CheY dephosphorylation. The high sensitivity indicates that this signal is generated by transport-induced dephosphorylation of the PTS rather than phosphoenolpyruvate consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.