A total of 137 accessions from 18 wild almond species were collected from Iran and leaf and fruit traits were characterized. Also evaluated were flowering and ripening date, self-incompatibility and kernel bitterness. An extensive phenotypic diversity was found both among and within species. Differences in average leaf dimensions among and within species were associated with average rainfall but not altitude of collection site. Adjacent accessions located in drier areas had smaller leaf dimensions than those located in semi-humid or humid regions. No relation was found between average fruit dimensions and collection site conditions. Principal component analysis revealed that the nut weight and width, and the kernel weight had highest loading in the first component accounting for 45.8% of total variation. In contrast, leaf traits in the second component accounted for 22.3% of total variation. No significant correlations were detected between leaf dimensions and fruit traits in all species evaluated. Results document a rich source of new germplasm for almond improvement programs. Small fruit size, pollen-pistil self-incompatibility, and bitter kernel flavour are the most common obstacles to the utilization of this wild germplasm in breeding.
The present work describes the changes in the activities of key antioxidant enzymes and the levels of some metabolites in relation to salt tolerance in eight wild almond species. All the species were exposed to four levels of NaCl (control, 40, 80 and 120 mM). Plant fresh biomass, α-, γ- and δ-tocopherol, total soluble proteins, malondialdehyde (MDAeq), H2O2, total phenolics, and the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were analyzed in leaves of salt-stressed and non-stressed plants of the eight almond species. In all the species, salt stress significantly enhanced the activities of SOD and POD, levels of total phenolics and γ- and δ-tocopherols. High levels of salt stress significantly depressed the levels of total soluble proteins, MDA and CAT activity, while salt stress did not significantly affect leaf H2O2 contents. Regression analysis showed that the relationship between salt levels and total soluble proteins, CAT, γ-tocopherol, MDAeq, SOD and POD were statistically significant. Principal component analysis discriminated the almond species on the basis of their degree of tolerance/sensitivity to saline conditions: Prunus reuteri and P. glauca were ranked as salt tolerant, P. lycioides and P. scoparia as moderately tolerant, and P. communis, P. eleagnifolia , P. arabica and P. orientalis as salt sensitive. The results could be used for selecting salt tolerant genotypes to be used as rootstocks for almond cultivation
In wild species of almond (Prunus spp.), the activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), as well as the levels of ascorbate/glutathione pools and H2O2 were subjected to water deficit and shade conditions. After 60 days of water shortage, the species were subjected to a rewatering treatment. During water recovery, leaves exposed to sunlight and leaves under shade conditions of about 20–35% of environmental irradiance were sampled. After 70 days without irrigation, mean predawn leaf water potential of all the species fell from −0.32 to −2.30 MPa and marked decreases in CO2 uptake and transpiration occurred. The activities of APX, MDHAR, DHAR, and GR increased in relation to the severity of drought stress in all the wild species studied. Generally, APX, MDHAR, DHAR, and GR were down-regulated during the rewatering phase and their activities decreased faster in shaded leaves than in sun-exposed leaves. The levels in total ascorbate, glutathione, and H2O2 were directly related to the increase in drought stress and subsequently decreased during rewatering. The antioxidant response of wild almond species to drought stress limits cellular damage caused by reactive oxygen species during periods of water deficit and may be of key importance for the selection of drought-resistant rootstocks for cultivated almond
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.