Additional food provided prey-predator systems have become a significant and important area of study for both theoretical and experimental ecologists. This is mainly because provision of additional food to the predator in the prey-predator systems has proven to facilitate wildlife conservation as well as reduction of pesticides in agriculture. Further, the mathematical modeling and analysis of these systems provide the eco-manager with various strategies that can be implemented on field to achieve the desired objectives. The outcomes of many theoretical and mathematical studies of such additional food systems have shown that the quality and quantity of additional food play a crucial role in driving the system to the desired state. However, one of the limitations of these studies is that they are asymptotic in nature, where the desired state is reached eventually with time. To overcome these limitations, we present a time optimal control study for an additional food provided prey-predator system involving inhibitory effect with quantity of additional food as the control parameter with the objective of reaching the desired state in finite (minimum) time. The results show that the optimal solution is a bang-bang control with a possibility of multiple switches. Numerical examples illustrate the theoretical findings. These results can be applied to both biological conservation and pest eradication.
Theoretical and experimental studies on prey-predator systems where predator is supplied with alternate sources of food have received significant attention over the years due to their relevance in achieving biological conservation and biological control. Some of the outcomes of these studies suggest that with appropriate quality and quantity of additional food, the system can be steered towards any desired state eventually with time. One of the limitations of previous studies is that the desired state is reached asymptotically, which makes the outcomes not easily applicable in practical scenarios. To overcome this limitation, in this work, we formulate and study optimal control problems to achieve the desired outcomes in minimum (finite) time.We consider two different models of additional food provided prey-predator systems involving Holling type IV functional response (with inhibitory effect of prey). In the first scenario, additional food is incorporated implicitly into the predator's functional response with a possibility of achieving biological conservation through co-existence of species and biological control by maintaining prey at a level that is least harmful to the system. In the second, the effect of additional food is incorporated explicitly into the predator's compartment with the goal of pest management by maintaining prey density at a very minimal damaging level. For both cases, appropriate optimal control strategies are derived and the theoretical findings are illustrated by numerical simulations. We also discuss the ecological significance of the theoretical findings for both models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.