Bio-actuated micro-pumps do not need any external power source and pose no risk of electrical or heat shock for the biological materials in lab-on-chip systems. Several different designs of bio-actuated micro-pumps based on the use of the contractile force of cultured cardiomyocites have been proposed earlier. Here we present a novel type of a bio-actuated micro-pump representing a microfluidic channel with a contractile wall. The flow inside the channel is generated by the peristaltic movement of its wall caused by the propagation of an excitation-contraction wave along the channels surface. The directional flow generated by the pump was demonstrated by tracking of polystyrene microspheres, moving in the direction of the propagation of the excitation-contraction wave with an average velocity of 6-8 μm/min. The suggested design of a micro-pump allows the control of pumping direction, which might be useful for targeted delivery of fluids and substances in lab-on-chip systems. Prospects of future development and implementation of this kind of bio-actuated peristaltic pumps are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.