The blood coagulation system (BCS) is a complex biological system playing a principal role in the maintenance of haemostasis. Insufficient activity of the BCS may lead to bleeding and blood loss (e.g. in the case of haemophilia). On the other hand, excessive activity may cause intravascular blood coagulation, thromboses and embolization. Most of the methods currently used for BCS monitoring suffer from the major disadvantage of being invasive. The purpose of the present work is to demonstrate the feasibility of using ultrasonic methods for noninvasive registration of the early stages of blood coagulation processes in intensive flows. With this purpose, a special experimental set-up was designed, facilitating the simultaneous detection of optical and acoustic signals during the clotting process. It was shown that (i) as microemboli appear in the flow during the early stage of blood coagulation, the intensity of the Doppler signal increases twofold, and (ii) microemboli formation in the early stages of blood clotting always reveals itself through an acoustic contrast. Both of these effects are well defined, so we hope that they may be used for non-invasive BCS monitoring in clinical practice.
Bio-actuated micro-pumps do not need any external power source and pose no risk of electrical or heat shock for the biological materials in lab-on-chip systems. Several different designs of bio-actuated micro-pumps based on the use of the contractile force of cultured cardiomyocites have been proposed earlier. Here we present a novel type of a bio-actuated micro-pump representing a microfluidic channel with a contractile wall. The flow inside the channel is generated by the peristaltic movement of its wall caused by the propagation of an excitation-contraction wave along the channels surface. The directional flow generated by the pump was demonstrated by tracking of polystyrene microspheres, moving in the direction of the propagation of the excitation-contraction wave with an average velocity of 6-8 μm/min. The suggested design of a micro-pump allows the control of pumping direction, which might be useful for targeted delivery of fluids and substances in lab-on-chip systems. Prospects of future development and implementation of this kind of bio-actuated peristaltic pumps are discussed.
In the present study, we investigated the capabilities of a novel ultrasonic approach for real-time control of fibrinolysis under flow conditions. Ultrasonic monitoring was performed in a specially designed experimental
in vitro
system. Fibrinolytic agents were automatically injected at ultrasonically determined stages of the blood clotting. The following clots dissolution in the system was investigated by means of ultrasonic monitoring. It was shown, that clots resistance to fibrinolysis significantly increases during the first 5 minutes since the formation of primary micro-clots. The efficiency of clot lysis strongly depends on the concentration of the fibrinolytic agent as well as the delay of its injection moment. The ultrasonic method was able to detect the coagulation at early stages, when timely pharmacological intervention can still prevent the formation of macroscopic clots in the experimental system. This result serves as evidence that ultrasonic methods may provide new opportunities for real-time monitoring and the early pharmacological correction of thrombotic complications in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.