Abstract. The ITER electron cyclotron (EC) upper port antenna (or launcher) is nearing completion of the detailed design stage and will soon be starting the final build to print design. The main objective of this launcher is to drive current locally to stabilise the NTMs (depositing ECCD inside of the island that forms on either the q=3/2 or 2 rational magnetic flux surfaces) and control the sawtooth instability (deposit ECCD near the q=1 surface). The launcher should be capable of steering the focused beam deposition location to the resonant flux surface over the range in which the q=1, 3/2 and 2 surfaces are expected to be found, for the various plasma equilibria susceptible to the onset of NTMs and sawteeth. The aim of this paper is to provide the design status of the principle components that make up the launcher: port plug, mm-wave system and shield block components. The port plug represents the chamber that provides a rigid support structure that houses the mm-wave and shield blocks. The mm-wave system is comprised of the components used to guide the RF beams through the port plug structure and refocus the beams far into the plasma. The shield block components are used to attenuate the nuclear radiation from the burning plasma, protecting the fragile in-port components and reducing the neutron streaming through the port assembly. The design of these three subsystems is described, in addition, the relevant thermo-mechanical and electro-magnetic analysis are reviewed for the critical design issues.
This paper describes what we can learn on the regimes of spontaneous electron temperature oscillations discovered in Tore Supra from the analysis of MHD activity. Since the first observations of this oscillating behaviour of plasma equilibrium, and its interpretation as a predator-prey system involving lower hybrid waves power deposition and electron confinement, analysis of MHD modes has confirmed the reality of safety factor profile oscillations. This points towards the importance of rational values of the safety factor in the transition to transport barriers in reversed magnetic shear plasmas.
The TCV tokamak facility is used to study the effect of innovative plasma shapes on core and edge confinement properties. In low collisionality L-mode plasmas with electron cyclotron heating (ECH) confinement increases with increasingly negative triangularity δ. The confinement improvement correlates with a decrease of the inner core electron heat transport, even though triangularity vanishes to the core, pointing to the effect of global -non-localtransport properties. TCV has recently started the study of the effects of negative triangularity in H-mode plasmas. H-mode confinement is known to improve towards positive triangularity, due to the increase of pedestal height, though plagued by large edge localised modes (ELMs). An optimum triangularity could thus be sought between steep edge barriers (δ>0) with large ELMs, and improved core confinement (δ<0) with small ELMs. This opens the possibility for a reactor of having H-mode-level confinement within an L-mode edge, or at least with mitigated ELMs. In TCV, ELMy H-modes with δtop<0 are explored, showing a reduction of ELM peak energy losses. Alternative shapes are proposed in the light of ideal MHD stability calculations. Shaping has the potential to bring at the same time key solutions to confinement, stability and wall loading issues and, from the comparison of experimental and simulation results, to give deeper insight in gyrokinetic and stability modelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.