Genetic variants responsible for susceptibility to obesity and its comorbidities among Hispanic children have not been identified. The VIVA LA FAMILIA Study was designed to genetically map childhood obesity and associated biological processes in the Hispanic population. A genome-wide association study (GWAS) entailed genotyping 1.1 million single nucleotide polymorphisms (SNPs) using the Illumina Infinium technology in 815 children. Measured genotype analysis was performed between genetic markers and obesity-related traits i.e., anthropometry, body composition, growth, metabolites, hormones, inflammation, diet, energy expenditure, substrate utilization and physical activity. Identified genome-wide significant loci: 1) corroborated genes implicated in other studies (MTNR1B, ZNF259/APOA5, XPA/FOXE1 (TTF-2), DARC, CCR3, ABO); 2) localized novel genes in plausible biological pathways (PCSK2, ARHGAP11A, CHRNA3); and 3) revealed novel genes with unknown function in obesity pathogenesis (MATK, COL4A1). Salient findings include a nonsynonymous SNP (rs1056513) in INADL (p = 1.2E-07) for weight; an intronic variant in MTNR1B associated with fasting glucose (p = 3.7E-08); variants in the APOA5-ZNF259 region associated with triglycerides (p = 2.5-4.8E-08); an intronic variant in PCSK2 associated with total antioxidants (p = 7.6E-08); a block of 23 SNPs in XPA/FOXE1 (TTF-2) associated with serum TSH (p = 5.5E-08 to 1.0E-09); a nonsynonymous SNP (p = 1.3E-21), an intronic SNP (p = 3.6E-13) in DARC identified for MCP-1; an intronic variant in ARHGAP11A associated with sleep duration (p = 5.0E-08); and, after adjusting for body weight, variants in MATK for total energy expenditure (p = 2.7E-08) and in CHRNA3 for sleeping energy expenditure (p = 6.0E-08). Unprecedented phenotyping and high-density SNP genotyping enabled localization of novel genetic loci associated with the pathophysiology of childhood obesity.
Global metabolomic profiling in nonobese and obese children replicates the increased BCAA and acylcarnitine catabolism and changes in nucleotides, lysolipids, and inflammation markers seen in obese adults; however, a strong signature of reduced fatty acid catabolism and increased steroid derivatives may be unique to obese children. Metabolic flexibility in fuel use observed in obese children may occur through the activation of alternative intermediary pathways. Insulin resistance, hyperleptinemia, hypertriglyceridemia, hyperuricemia, and oxidative stress and inflammation evident in obese children are associated with distinct metabolomic profiles.
Offering weight loss classes was a successful method of enticing low-income women to participate in an educational intervention that benefited their children. Overweight and obese mothers who modified their food choices and fat habits made comparable changes for their child.
OBJECTIVE-To quantitate insulin sensitivity in lean and obese nondiabetic baboons and examine the underlying cellular/ molecular mechanisms responsible for impaired insulin action to characterize a baboon model of insulin resistance.RESEARCH DESIGN AND METHODS-Twenty baboons received a hyperinsulinemic-euglycemic clamp with skeletal muscle and visceral adipose tissue biopsies at baseline and at 30 and 120 min after insulin. Genes and protein expression of key molecules involved in the insulin signaling cascade (insulin receptor, insulin receptor substrate-1, p85, phosphatidylinositol 3-kinase, Akt, and AS160) were sequenced, and insulin-mediated changes were analyzed.RESULTS-Overall, baboons show a wide range of insulin sensitivity (6.2 Ϯ 4.8 mg ⅐ kg Ϫ1 ⅐ min Ϫ1 ), and there is a strong inverse correlation between indexes of adiposity and insulin sensitivity (r ϭ Ϫ0.946, P Ͻ 0.001 for % body fat; r ϭ Ϫ0.72, P Ͻ 0.001 for waist circumference). The genes and protein sequences analyzed were found to have ϳ98% identity to those of man. Insulin-mediated changes in key signaling molecules were impaired both in muscle and adipose tissue in obese insulinresistant compared with lean insulin-sensitive baboons. CONCLUSIONS-The obese baboon is a pertinent nonhuman primate model to examine the underlying cellular/molecular mechanisms responsible for insulin resistance and eventual development of type 2 diabetes. Diabetes 57:899-908, 2008 I nsulin resistance is characterized by impaired response of target organs (e.g., skeletal muscle, liver, adipose tissue, and heart) to the physiological effects of insulin and results in impaired glucose metabolism. Insulin resistance is a characteristic feature of many common metabolic disorders, including obesity, type 2 diabetes, hypertension, and dyslipidemia, and of the normal aging process, which collectively constitute risk factors for the development of atherosclerotic cardiovascular disease (1-3).Nonhuman primates occupy a unique place in biomedical and evolutionary research by virtue of their close genetic and physiological similarity to humans and represent a valuable model that has great relevance to the study of human disease. Old World monkeys, which recently (ϳ25 millions years ago in evolutionary terms) diverged from the Hominoidea, have been most extensively studied (4,5). This taxonomic group includes vervet monkeys (Chlorocebus aethiops), rhesus macaques (Macaca mulatta), cynomolgus monkeys (Macaca fascicularis), and baboons (Papio hamadryas) (6). Despite the relevance of primate study to human disease research, there has been a shortage of primates available for biomedical research (7). Baboons and humans share great genetic similarity, with ϳ96% homology evident at the DNA level (8). The sequences of specific genes and the arrangements of genetic loci on chromosomes reflect the close evolutionary relationship between these two species (9). Not surprisingly, nonhuman primates develop many diseases similar to those in man, and they have been used as a model for osteoporos...
A loss-of-function mutation (Q141K, rs2231142) in the ATP-binding cassette, subfamily G, member 2 gene (ABCG2) has been shown to be associated with serum uric acid levels and gout in Asians, Europeans, and European and African Americans; however, less is known about these associations in other populations. Rs2231142 was genotyped in 22,734 European Americans, 9,720 African Americans, 3,849 Mexican Americans, and 3,550 American Indians in the Population Architecture using Genomics and Epidemiology (PAGE) Study (2008-2012). Rs2231142 was significantly associated with serum uric acid levels (P = 2.37 × 10(-67), P = 3.98 × 10(-5), P = 6.97 × 10(-9), and P = 5.33 × 10(-4) in European Americans, African Americans, Mexican Americans, and American Indians, respectively) and gout (P = 2.83 × 10(-10), P = 0.01, and P = 0.01 in European Americans, African Americans, and Mexican Americans, respectively). Overall, the T allele was associated with a 0.24-mg/dL increase in serum uric acid level (P = 1.37 × 10(-80)) and a 1.75-fold increase in the odds of gout (P = 1.09 × 10(-12)). The association between rs2231142 and serum uric acid was significantly stronger in men, postmenopausal women, and hormone therapy users compared with their counterparts. The association with gout was also significantly stronger in men than in women. These results highlight a possible role of sex hormones in the regulation of ABCG2 urate transporter and its potential implications for the prevention, diagnosis, and treatment of hyperuricemia and gout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.