Mulberry (Morus spp.), being an economically important tree, is cultivated in China, India, Thailand, Brazil, Uzbekistan and other Countries across the globe, for its leaves to feed monophagous mulberry silkworm (Bombyx mori). The sustainability of silk industry is directly correlated with the production and continuous supply of high-quality mulberry leaves. In India, it is cultivated on large scale in tropical, sub-tropical and temperate regions under irrigated conditions for silkworm rearing. Drought, low temperature, high salinity and alkalinity, being experienced in widespread areas, are the major abiotic stresses, causing reduction in its potential foliage yield and quality. Further, climate change effects may worsen the productivity of mulberry in near future, not only in India but also across the globe. Although traditional breeding methods contributed immensely towards the development of abiotic stress-tolerant mulberry varieties, still there is lot of scope for implementation of modern genomic and molecular biology tools for accelerating mulberry genetic improvement programmes. This review discusses omics approaches, molecular breeding, plant tissue culture and genetic engineering techniques exploited for mulberry genetic improvement for abiotic stress tolerance. However, high-throughput biotechnological tools such as RNA interference, virus-induced gene silencing, epigenomics and genome editing tools need to be utilized in mulberry to accelerate the progress of functional genomics. The application of genomic tools such as genetic engineering, marker-assisted selection and genomic selection in breeding programmes can hasten the development of climate resilient and productive mulberry varieties leading to the vertical and horizontal expansion for quality silk production.
Bombyx mori nucleopolyhedrovirus (BmNPV) that infects the silkworm, B. mori, accounts for .50% of silk cocoon crop losses globally. We speculated that simultaneous targeting of several BmNPV essential genes in transgenic silkworm would elicit a stable defense against the virus. We introduced into the silkworm germline the vectors carrying short sequences of four essential BmNPV genes in tandem, either in sense or antisense or in inverted-repeat arrangement. The transgenic silkworms carrying the inverted repeat-containing transgene showed stable protection against high doses of baculovirus infection. Further, the antiviral trait was incorporated to a commercially productive silkworm strain highly susceptible to BmNPV. This led to combining the high-yielding cocoon and silk traits of the parental commercial strain and a very high level of refractoriness (.75% survival rate as compared to ,15% in nontransgenic lines) to baculovirus infection conferred by the transgene. We also observed impaired infectivity of the occlusion bodies derived from the transgenic lines as compared to the wild-type ones. Currently, large-scale exploitation of these transgenic lines is underway to bring about economic transformation of sericulture. R NA interference (RNAi) is a mechanism by which cells silence the expression of foreign genes. This process often provides an adaptive innate immunity against viruses where double-stranded RNAs encoded by the viruses during infection act as pathogen trigger after they are taken up by the cellular RNAi machinery (Wang et al. 2006). Alternatively, this natural defense mechanism is exploited as an antiviral therapy via the artificial inhibition of the expression of essential viral genes (Leonard and Schaffer 2006). Multiple protocols of delivery of dsRNA or of constructs encoding dsRNAs in the organism are currently under assay to combat infections of various viruses. The efficiency of the assays is still challenged by the delicate setting of the proper dosage of the RNAi, the relative longevity of the effect, the occurrence of RNAi driven toxicity, and the virus-intrinsic susceptibility. A few attempts have been made in animal and plant models where the antiviral trait was installed by transgenesis to confer stable protection to the transformed individuals and to their progeny. Successes have been reached in plants ( Bucher et al. 2006;Bonfim et al. 2007;Zhang 2010) but, to our knowledge, no case has yet been reported in animals showing a stable and robust protection against a virus after a RNAi-aided antiviral trait was introduced through germline transformation.The baculovirus, Bombyx mori nucleopolyhedrovirus (BmNPV), is a major pathogen that affects silkworm rearings and hampers silk cocoon production in Asia. In India alone .50% of silk cocoon crop losses are attributed to baculovirus infection (Khurad et al. 2006). Effective treatment against the virus has been elusive due to its sturdy nature and the lack of control strategies. Interestingly, the biology of the virus is reasonably...
The mulberry silkworm, Bombyx mori (L.), is a model organism of lepidopteran insects with high economic importance. The viral diseases of the silkworm caused by Bombyx mori nucleopolyhedrovirus (BmNPV) and Bombyx mori bidensovirus (BmBDV) inflict huge economic losses and significantly impact the sericulture industry of India and other countries. To understand the distribution of Indian isolates of the BmNPV and to investigate their genetic composition, an in-depth population structure analysis was conducted using comprehensive and newly developed genomic analysis methods. The seven new Indian BmNPV isolates from Anantapur, Dehradun, Ghumarwin, Jammu, Kashmir, Mysore and Salem grouped in the BmNPV clade, and are most closely related to Autographa californica multiple nucleopolyhedrovirus and Rachiplusia ou multiple nucleopolyhedrovirus on the basis of gene sequencing and phylogenetic analyses of the partial polh, lef-8 and lef-9 gene fragments. The whole genome sequencing of three Indian BmNPV isolates from Mysore (-My), Jammu (-Ja) and Dehradun (-De) was conducted, and intra-isolate genetic variability was analyzed on the basis of variable SNP positions and the frequencies of alternative nucleotides. The results revealed that the BmNPV-De and BmNPV-Ja isolates are highly similar in their genotypic composition, whereas the population structure of BmNPV-My appeared rather pure and homogenous, with almost no or few genetic variations. The BmNPV-De and BmNPV-Ja samples further contained a significant amount of BmBDV belonging to the Bidnaviridae family. We elucidated the genotype composition within Indian BmNPV and BmBDV isolates, and the results presented have broad implications for our understanding of the genetic diversity and evolution of BmNPV and co-occurring BmBDV isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.