In this study, we report the impact of structural 4H-SiC epitaxial defects on the electrical characteristics and blocking capabilities of SiC power devices. The detection and classification of the various crystal defects existing in 4H-SiC epitaxial layers and substrates was carried out using a commercial inspection tool combining an optical microscope along with a photoluminescence (PL) channel. After the fabrication of dedicated test structures, devices that contain a single crystal defect were selected and electrically characterized in reverse bias mode. Photon emission microscopy was performed in order to localize the leakage current spots within the devices. Thus, a direct correlation of the various crystal defects with the reduced blocking capability mechanism was made. This evaluation helps to set directions and build a strategy towards the reduction of critical defects in order to improve the performance of SiC devices for high power applications.
In this work we report on the impact of various crystalline defects present in 4H-SiC epitaxial layers on the electrical blocking characteristics of SiC power devices. Dedicated test structures were fabricated and electrically characterized in reverse bias mode. SiC substrate and epitaxial crystal defects, as well defects due to front-end processing were detected and classified using commercial inspection tools. Devices with a single defect-type were studied which leads to a direct correlation of the leakage current spot position within the device and the obtained blocking characteristics. This gives a better understanding of each crystal defect impact on device ́s performance which leads to an improvement in the reliability and cost reduction of SiC power devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.