Thermal energy from groundwater in abandoned, flooded, coal mines has the potential to make a significant contribution to decarbonisation of heat and Net-Zero carbon emissions. In Glasgow, UK, a subsurface observatory has been constructed for mine water heat and heat storage research. We synthesise geological and mine water resource findings from a four-year period of borehole planning, drilling, logging and testing. The heterogenous bedrock is typical of the Scottish Coal Measures Group, whereas superficial deposits are more sand- and gravel-dominated than prognosed. Mine water boreholes encountered workings in the Glasgow Upper, Glasgow Ell and Glasgow Main coal seams, proving water-filled voids, mine waste, fractured rock mass and intact coal pillars with high yields on initial hydrogeological testing. Whilst the depth and extent of mine workings delineated on mine abandonment plans proved accurate, metre-scale variability was expected and proved in the boreholes. A mine water reservoir classification established from the observatory boreholes highlights the resource potential in areas of total extraction, stowage, and stoop and room workings. Since their spatial extent is more extensive across the UK than shafts or roadways, increasing the mine water energy evidence base and reducing exploration risk in these types of legacy workings is important.Supplementary material Borehole reports and other datasets are available at https://ukgeos.ac.uk/data-downloads (mixture of over 20 DOI datasets and reports/data packs published openly on https://nora.nerc.ac.uk, all material is deposited in the National Geoscience Data Centre)
<p>Mine water geothermal heat production and storage can provide a decarbonised source of energy for space heating and cooling, however the large resource potential has yet to be exploited widely. Besides economic, regulatory and licensing barriers, geoscientific uncertainties such as detailed understanding of thermal and hydrogeological subsurface processes, resource sustainability and potential environmental impacts remain.</p><p>The UK Geoenergy Observatory in Glasgow is a research infrastructure for investigating shallow, low-temperature coal mine water heat energy resources available in abandoned and flooded mine workings at depths of around 50-90 m. It is an at-scale &#8216;underground laboratory&#8217; of 12 boreholes, surface monitoring equipment and open data. The Glasgow Observatory is accepting requests for researchers and innovators to undertake their own experiments, test sensors and methods to increase the scientific evidence base and reduce uncertainty for this shallow geothermal technology.</p>
Mine water geothermal energy could provide sustainable heating, cooling and storage to assist in the decarbonisation of heat and achieving Net Zero carbon emissions. However, mined environments are highly complex and we currently lack the understanding to confidently enable a widespread, cost-effective deployment of the technology. Extensive and repeated use of the mined subsurface as a thermal source/store and the optimisation of operational infrastructure encompasses a range of scientific and technical challenges that require broad partnerships to address. We present emerging results of a pioneering multidisciplinary collaboration formed around an at-scale mine water geothermal research infrastructure in Glasgow, United Kingdom. Focused on a mined, urban environment, a range of approaches have been applied to both characterise the environmental change before geothermal activities to generate “time zero” datasets, and to develop novel monitoring tools for cost-effective and environmentally-sound geothermal operations. Time zero soil chemistry, ground gas, surface water and groundwater characterisation, together with ground motion and seismic monitoring, document ongoing seasonal and temporal variability that can be considered typical of a post-industrial, urban environment underlain by abandoned, flooded coal mine workings. In addition, over 550 water, rock and gas samples collected during borehole drilling and testing underwent diverse geochemical, isotopic and microbiological analysis. Initial results indicate a connected subsurface with modern groundwater, and resolve distinctive chemical, organic carbon and stable isotope signatures from different horizons that offer promise as a basis for monitoring methods. Biogeochemical interactions of sulphur, carbon and iron, plus indications of microbially-mediated mineral oxidation/reduction reactions require further investigation for long term operation. Integration of the wide array of time zero observations and understanding of coupled subsurface processes has significant potential to inform development of efficient and resilient geothermal infrastructure and to inform the design of fit-for-purpose monitoring approaches in the quest towards meeting Net Zero targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.