Федеральное государственное бюджетное научное учреждение «Федеральный научный центр биологической защиты растений», Краснодар, Россия Контактное лицо Татьяна М. Сидорова, кандидат биологических наук, старший научный сотрудник ФНЦ биологической защиты растений; 350039 Россия, Краснодарский край, г. Краснодар, п/о 39. Тел.
The antifungal activity of the Bacillus bacteria is based on their ability to produce metabolites. Therefore, when selecting a strain that produces an effective biofungicide, it is necessary to assess the metabolism of bacteria. The aim of this work is to isolate exo- and endometabolites of the promising B. velezensis BZR 336g and B. velezensis BZR 517 strains and assess their antifungal activity. Studies were carried out in 2020–2021. The object of the study is a liquid culture of the B. velezensis BZR 336g and B. velezensis BZR 517 strains. Methods of liquid extraction, ascending thin layer chromatography (TLC), bioautography with a test-culture of Fusarium oxysporum var. orthoceras and Alternaria sp. fungi were used to analyze metabolites. The ability of the strains to accumulate a complex of active metabolites showing antifungal effect from fungistatic to fungicidal action was revealed. On the bioautogram of exometabolites, we found two most pronounced zones (Rf 0.18 and 0.29) of Fusarium oxysporum var. orthoceras BZR P1 growth inhibition (fungicide). Zones with Rf 0.58 for B. velezensis BZR 336g and Rf 0.70 for B. velezensis BZR 517 correspond to the test fungus growth retardation (fungistatic). Significant suppression of Alternaria sp. BZR P8 growth was also observed in two zones (Rf 0.18 and 0.29). The use of surfactin, iturin A, fengycin (Sigma-Aldrich®) in the TLC analysis made it possible to detect similar lipopeptides in the composition of metabolite complexes produced by the studied bacteria. It should be noted that the studied strains differed both in their ability to produce metabolites of different structure (can be found when analyzing chromatograms under ultraviolet light) and in their effect on phytopathogenic fungi in vitro. This may indicate possible differences in the mechanism of antagonistic activity of bacteria against phytopathogenic fungi. Thus, B. velezensis BZR 336g and B. velezensis BZR 517 produce a significant set of antifungal metabolites and can be used as strains to produce effective biofungicides.
The research shows a raise of mineral components bioavailability and increase of antifungal activity of strain-producer Bacillus subtilis BZR 336g by addition of citric acid in a nutrient medium.
This paper investigates the antagonistic and plant growth promotion activity of the new indigenous bacteria antagonist strains P. chlororaphis BZR 245-F and Pseudomonas sp. BZR 523-2. It was found that on the 10th day of cultivation, BZR 245-F and BZR 523-2 exhibit an antagonistic activity against F. graminearum at the level of 59.6% and 15.1% and against F. oxysporum var. orthoceras at the level of 50.2% and 8.9%, respectively. Furthermore, the BZR 523-2 strain stimulated the growth of winter wheat seedlings more actively than the BZR 245-F strain. When processing seeds of winter wheat, Pseudomonas sp. BZR 523-2 indicators were higher than in the control: plant height increased by 10.3%, and root length increased by 18.6%. The complex characteristic properties of the metabolite were studied by bioautography and HPLC-MS. Bioautography proved the antifungal activity of phenazine nature compounds synthesized by the new bacterial strains. We qualitatively and quantitatively analyzed them by HPLC-MS analysis of the strain sample metabolites. In the BZR 245-F sample, we found more phenazine compounds of various types. Their total phenazine concentration in the BZR 245-F was more than five times greater than in the BZR 523-2. We defined crucial differences in the quantitative content of the other metabolites. Despite the difference between new indigenous bacteria antagonist strains, they can be used as producers of effective biopesticides for sustainable agriculture management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.