The effect of extrusion-induced particle-orientation anisotropy on the mechanical behavior of metal-matrix composites (MMCs) was examined. In this study, we have shown that this anisotropy has a significant influence on the tensile and fatigue behavior SiC particle-reinforced Al alloy composites. The preferred orientation of SiC particles was observed parallel to the extrusion axis, with the extent of orientation being highest for the lowest-volume-fraction composites. The composites exhibited higher Young's modulus and tensile strength along the longitudinal direction (parallel to the extrusion axis) than in the transverse direction. The extent of anisotropic behavior increased with increasing volume fraction, because of the increasing influence of the SiC reinforcement on the Young's modulus and tensile properties. The preferred orientation also resulted in anisotropy in the fatigue behavior of the composite material. The trends mirrored those observed in tension, with higher overall fatigue strengths for both orientations and a higher anisotropy with increasing volume fraction of particles. The influence of particle-orientation anisotropy and the resulting tensile and fatigue damage mechanisms is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.