Abstract:On the basis of the unique experience of operating reactors with heavy liquid metal coolant-eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral) design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing mode. The reactor is distinct in that it has a high level of self-protection and passive safety, it is factory manufactured and the assembled reactor can be transported by railway. Multipurpose application of the reactor is presumed, primarily, it can be used for regional power to produce electricity, heat and for water desalination. The Project is being realized within the framework of state-private partnership with joint venture OJSC "AKME-Engineering" established on a parity basis by the State Atomic Energy Corporation "Rosatom" and the Limited Liability Company "EuroSibEnergo".
Potential (non-nuclear) energy stored in reactor facility coolant is a crucial factor determining the NPP safety/hazard characteristics as it is inherent property of the material and cannot be changed. Enhancing safety of the NPP with traditional type reactor facilities, in which potential energy is stored in large quantities, requires buildup of the number of safety systems and in-depth defense barriers, which reduce the probability of severe accidents (but do not exclude the opportunity of their realization) and seriousness of their consequences. Keeping the risk of radioactivity release for different type reactor facilities at a same level of social acceptability, the number of safety systems and in-depth defense barriers, which determine essentially the NPP economical parameters, can be reduced with diminishing the potential energy stored in the reactor facility. To analyze the effect of potential energy on reactor facility safety/hazard, a diagram of reactor facility hazard has been proposed. It presents a probability of radioactivity release as a function of radioactivity release values for reactor facilities with identical radiation potential, which differ by values of potential energy stored in coolant. It is proposed to account NPP safety/hazard effect on economics by adding a certain interest on the electricity cost for making payments in a special insurance fund assigned to compensate the expenses for elimination of consequences of a possible accident.
Fast reactors used lead-bismuth eutectic (LBE) and lead as coolants possess very high level of inherent self-protection and passive safety against severe accident. So, population radiophobia can be overcome. That type of reactors can be simultaneously more safely and more cheaply. As all other coolants, LBE and lead coolant (LC) possess the certain virtues and shortcomings. The presented report includes the comparative analysis of characteristic properties of those coolants, their impact on reactor safety, reliability and operating characteristics. The conclusion is made about promising usage of FRs with these coolants in future NP after the experience in operating of the prototypes of such reactors has been obtained.
The article is devoted to the history of the creation of lead-bismuth-cooled reactor units (RUs) for nuclear-powered submarines (NPSs), which were developed in the absence of the necessary knowledge and experience, as well as under strict deadlines for completing work, which practically excluded the possibility of carrying out related full-scale scientific research. This led to a number of failures at the stage of developing this unique technology, the causes of which were later identified and eliminated. The authors explain the reasons for choosing a lead-bismuth eutectic alloy as a coolant, outline the main scientific and technical problems solved in the course of developing a lead-bismuth-cooled reactor unit, including those related to the coolant and corrosion resistance of steels, consider issues of ensuring radiation safety during work related to the release of polonium, ensuring the reliability of steam generators, incidents and accidents that occurred during the period of operation and ways to eliminate their causes.
Many developing countries need ecologically clean power sources (PS). The nuclear power plants are such sources. However, a great number of the developing countries do not possess developed large capacity power systems. Moreover, currently in the developing countries, there are no highly skilled personnel to provide construction and reliable and safe operation of the nuclear plants, which are complex and potentially hazardous systems. In some countries, the level of terroristic threat is extremely high. For that reason, there are specific requirements to the nuclear PSs intended for use in the developing countries. In the presented report, the specific requirements which must be met by the NPT proposed for use in developing countries are formulated, basic statements of the SVBR-100 concept are presented, design and principal scheme of the reactor facility are described, major characteristics of SVBR-100 are summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.