Numerical simulation of seismic waves’ propagation and imaging in a three-dimensional multiscale geological media is one of the main trends in the development of modern geophysics. We present the work flow for construction of the 3D digital twin of some real geological object. This object is cavernous fractured carbonate reservoir near the Riphean roof. One of the main features of this object is the presence of the family of faults filled with tectonic breccia. To simulate them, in particular, their interiors and surrounding damaged areas, we simulate paleotectonic processes with the use of 3D discrete elements technique. This simulation we do by GPU parallelization.
Next, when the fine digital geological model is done, we perform 3D finite-difference simulation of the seismic waves’ propagation and get the full 3D synthetic data set. To do this simulation we use an original technique based on local grid refinement in time and space. To be able to deal with huge amount of input/output data we use High-Performance Computing (HPC) systems with parallel architecture and hybrid parallelization strategy by simultaneous use of MPI and OpenMP.
The final step is validation of our original multiscale algorithm for seismic imaging, which suppresses specular reflection, but accumulates weak scattered/diffracted waves. This approach opens the way to the reconstruction of subseismic geological objects, like fractures, fracture corridors and clusters of caves. To construct these images we use HPC with parallel architecture and MPI+OpenMP programming.
—The efficiency of the development of an oil and gas field is largely determined by the knowledge of its geologic structure. In the recent decade, complex fractured carbonate reservoirs have attracted more and more attention. This paper is concerned with a new technology for constructing 3D images of complex reservoirs, based on Gaussian beam processing of scattered seismic waves. This technology was developed at OOO RN-KrasnoyarskNIPIneft’ in cooperation with the Trofimuk Institute of Petroleum Geology and Geophysics. To test it, a special synthetic model was constructed, which is analogous to one of the licensed objects of PAO NK Rosneft’. For this purpose, a full-scale 3D seismic was performed, which provided us with synthetic wave fields and made it possible to carry out well-controlled numerical experiments for reconstructing the geologic structure of the object of study. One of the distinctive features of the constructed digital model (digital twin) is the presentation of faults not as some ideal slip surfaces but as 3D geologic bodies filled with tectonic breccias. A series of numerical experiments was performed to simulate such breccias, the geometry of these bodies, and the geomechanical processes of fault formation. To select the parameters of the used method of discrete elements, we used the information obtained by geophysical studies in horizontal wells crossing the fault within the geologic prototype of the constructed digital model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.