Optical collective Thomson scattering is used to diagnose magnetized high energy density physics experiments at the Magpie pulsed-power generator at Imperial College London. The system uses an amplified pulse from the 2 nd harmonic of a Nd:YAG laser (3 J, 8 ns, 532 nm) to probe a wide diversity of hightemperature plasma objects; with densities in the range of 10 17 -10 19 cm -3 and temperatures between 10 eV and a few keV. The scattered light is collected from 100 µm-scale volumes within the plasmas, which are imaged onto optical fiber arrays. Multiple collection systems observe these volumes from different directions, providing simultaneous probing with different scattering K-vectors (and different associated α-parameters, typically in the range 0.5 -3) allowing independent measurements of separate velocity components of the bulk plasma flow. The fiber arrays are coupled to an imaging spectrometer with a gated ICCD. The spectrometer is configured to view the ion-acoustic waves (IAWs) of the collective Thomson scattered spectrum. Fits to the spectra with the theoretical spectral density function S(K,ω) yield measurements of the local plasma temperatures and velocities. Fitting is constrained by independent measurements of the electron density from laser interferometry, and the corresponding spectra for different scattering vectors. This TS diagnostic has been successfully implemented on a wide range of experiments, revealing temperature and flow velocity transitions across magnetized shocks, inside rotating plasma jets and imploding wire arrays, as well as providing direct measurements of drift velocities inside a magnetic reconnection current sheet.
We present a study of perpendicular subcritical shocks in a collisional laboratory plasma. Shocks are produced by placing obstacles into the super-magnetosonic outflow from an inverse wire array z-pinch. We demonstrate the existence of subcritical shocks in this regime and find that secondary shocks form in the downstream. Detailed measurements of the subcritical shock structure confirm the absence of a hydrodynamic jump. We calculate the classical (Spitzer) resistive diffusion length and show that it is approximately equal to the shock width. We measure little heating across the shock (< 10% of the ion kinetic energy) which is consistent with an absence of viscous dissipation.
We present a study of perpendicular subcritical shocks in a collisional laboratory plasma. Shocks are produced by placing obstacles into the super-magnetosonic outflow from an inverse wire array z-pinch. We demonstrate the existence of subcritical shocks in this regime and find that secondary shocks form in the downstream. Detailed measurements of the subcritical shock structure confirm the absence of a hydrodynamic jump. We calculate the classical (Spitzer) resistive diffusion length and show that it is approximately equal to the shock width. We measure little heating across the shock (< 10% of the ion kinetic energy) which is consistent with an absence of viscous dissipation.
Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.