Electronic properties of radiation damage produced in 4H-SiC epilayer by proton and alpha particle irradiation were investigated and compared. 4H-SiC epilayers, which formed the low doped n-base of Schottky barrier power diodes, were irradiated to identical depth with 550 keV protons and 1.9 MeV alphas. Radiation defects were then characterized by capacitance deep-level transient spectroscopy and C-V measurements. Results show that both projectiles produce identical, strongly localized damage peaking at ion’s projected range. Radiation defects have a negligible effect on dynamic characteristic of irradiated 4H-SiC Schottky diodes, however acceptor character of introduced deep levels and their high introduction rates deteriorate diode’s ON-state resistance already at very low irradiation fluences.
The effect of neutron, electron and ion irradiation on electrical characteristics of unipolar 1700V SiC power devices (JBS diodes, JFETs and MESFETs) was investigated. DLTS investigation showed that above mentioned projectiles introduce similar deep acceptor levels (electron traps) in the SiC bandgap which compensate nitrogen shallow donors and cause majority carrier (electron) removal. The key degradation effect occurring in irradiated devices is the increase of the ON-state resistance which is caused by compensation of the low doped n-type epilayer and simultaneous lowering of electron mobility. In the case of SiC power switches (JFET, MOSFET), these effects are accompanied by the shift of the threshold voltage. Radiation defects introduced in SiC power devices is unstable and some defects anneal out already at operation temperatures (below 175°C). However, this does not have significant effect on device characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.