Urban Search And Rescue is a growing area of robotic research. The RoboCup Federation has recognized this, and has created the new Virtual Robots competition to complement its existing physical robot and agent competitions. In order to successfully compete in this competition, teams need to field multi-robot solutions that cooperatively explore and map an environment while searching for victims. This paper presents the results of the first annual RoboCup Rescue Virtual competition. It provides details on the metrics used to judge the contestants as well as summaries of the algorithms used by the top four teams. This allows readers to compare and contrast these effective approaches. Furthermore, the simulation engine itself is examined and real-world validation results on the engine and algorithms are offered.
Abstract-To coordinate a team of robots for exploration is a challenging problem, particularly in large areas as for example the devastated area after a disaster. This problem can generally be decomposed into task assignment and multi-robot path planning. In this paper, we address both problems jointly. This is possible because we reduce significantly the size of the search space by utilizing RFID tags as coordination points.The exploration approach consists of two parts: a stand-alone distributed local search and a global monitoring process which can be used to restart the local search in more convenient locations. Our results show that the local exploration works for large robot teams, particularly if there are limited computational resources. Experiments with the global approach showed that the number of conflicts can be reduced, and that the global coordination mechanism increases significantly the explored area.
Programming the behavior of multi-robot systems is a challenging task which has a key role in developing effective systems in many application domains. In this paper, we present Petri Net Plans (PNPs), a language based on Petri Nets (PNs), which allows for intuitive and effective robot and multi-robot behavior design. PNPs are very expressive and support a rich set of features that are critical to develop robotic applications, including sensing, interrupts and concurrency. As a central feature, PNPs allow for a formal analysis of plans based on standard PN tools. Moreover, PNPs are suitable for modeling multi-robot systems and the developed behaviors can be executed in a distributed setting, while preserving the properties of the modeled system. PNPs have been deployed in several robotic platforms in different application domains. In this paper, we report three case studies, which address complex single robot plans, coordination and collaboration.
The problem of assigning tasks to a group of robots acting in a dynamic environment is a fundamental issue for a Multi Robot System (MRS) and several techniques have been studied to address this problem. Such techniques usually rely on the assumption that tasks to be assigned are inserted into the system in a coherent fashion. In this work we consider a scenario where tasks to be accomplished are perceived by the robots during mission execution. This issue has a significative impact on the task allocation process and, at the same time, makes it strictly dependent on perception capabilities of robots. More specifically, we present an asynchronous distributed mechanism based on Token Passing for allocating tasks in a team of robots.We tested and evaluated our approach by means of experiments both in a simulated environment and with real robots; our scenario comprises a set of robots that must cooperatively collect a set of objects scattered in the working environment. Each object collection task requires the cooperation of two robots. The experiments in the simulation environment allowed us to extract quantitative data from several missions and in different operative conditions and to characterize in a statistical way the results of our approach, especially when the team size increases.
The need for improving the robustness, as well as the ability to adapt to different operational conditions, is a key requirement for a wider deployment of robots in many application domains. In this paper, we present an approach to the design of robotic systems, that is based on the explicit representation of knowledge about context. The goal of the approach is to improve the system performance, by dynamically tailoring the functionalities of the robot to the specific features of the situation at hand. While the idea of using contextual knowledge is not new, the proposed approach generalizes previous work and its advantages are discussed through a case study including several experiments. In particular, we identify many attempts to use contextual knowledge in several basic functionalities of a mobile robot such as: behaviors, navigation, exploration, localization, mapping and perception. We then show how re-designing our mobile platform with a common representation of contextual knowledge, leads to interesting improvements in many of the above mentioned components, thus achieving greater flexibility and robustness in the face of different situations. Moreover, a clear separation of contextual knowledge leads to a design methodology, which supports the design of small specialized system components instead of complex self-contained subsystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.