In Ukraine, sorghum is grown in an area of 41000−49000 ha, with the yield ranging over years from 0.99 t/ha (2001) to 4.63 t/ha (2018). Such differences in productivity may be explained by the fact that, in recent decades, the value of degree-days in the Steppe zone increased from 3145 °C (1990) to 3550 °C (2019), and in the Forest Steppe zone by 445 °C. At the same time, the current annual precipitation in Ukraine is 578 mm, while sustainable farming requires 700 mm. In Steppe, which is a traditional sorghum cultivation zone, the change in climatic conditions led to insufficient soil moisture, with weather conditions influencing the formation of sorghum grain yield. The assessment of the stability and plasticity of the sorghum yield allows us to conclude that cultivation of this crop will not be effective without irrigation, adjustment of the cultivation technology or introduction of the varieties adapted to drought and high temperature. On the contrary, in Forest Steppe, conditions for obtaining high yields of sorghum improved in recent decades. Thus, in Vinnytsia region, favorable conditions formed in the years
Мета. Дослідити частоту калусоутворення різного вихідного матеріалу сорго цукрового залежно від виду і розміру експланту та рівня плоїдності. Методи. Біотехнологічні, лабораторний, польовий, аналітичний, статистичний. Результати. У диплоїдних форм сорго цукрового в умовах in vitro калусоутворення з піхв встановлено на рівні 11,7 %, нижчий відсоток 9,8 та 9,6 % відповідно виявлено у адаптованих в ґрунтових сумішках і польових рослинах сорго. У триплоїдних форм спостерігали таку ж закономірність: 13,6 % відповідно до 12,5 та 12,3 %. Тетраплоїдні форми сорго цукрового мали найвищий відсоток калусоутворення порівняно із диплоїдними та триплоїдними-16,6 % та 15,8 і 15,5 % відповідно. Тобто, вищезазначена закономірність прослідковується в усіх рослин сорго не залежно від умов вирощування. Незалежно від плоїдності вихідного матеріалу сорго цукрового та заданого розміру експланту (3-5,0 мм; 5,0-8,0; більше 8,0 мм) листових пластинок та піхв відмічено низький рівень калусогенезу-від 1,9 до 5,3 %. За цих розмірів у диплоїдних форм калусоутворення становило у культуральних рослин лише 4,0 %, у адаптованих у ґрунтових сумішках-3,3 %, у рослин, вирощених у польових умовах,-3,1%. У триплоїдних формах перерахованого вище вихідного матеріалу показники калусогенезу становили-3,0, 3,3 і 3,9 % відповідно. Встановлено незначне збільшення калусоутворення у тетраплоїдних вихідних матеріалів-від 5,3 до 4,2 %. Тип експланту піхви забезпечував незалежно від плоїдності матеріалу утворення 4,5 шт., а листові пластинки-17,9 шт. регенераційних експлантів. Однак, враховуючи плоїдність матеріалу, виявлено, що у диплоїдних формах кількість регенераційних експлантів з листових пластин у культуральних рослин досягала 11 шт., адаптованих у ґрунтових сумішах-8 шт., вирощених у польових умовах-7 шт., у триплоїдних формах відповідно 21 шт., 17 і 15 шт. Тетраплоїдні форми сорго цукрового дозволяли отримати 31 шт., 27 і 24 шт. регенераційних експлантів залежно від типу вихідного матеріалу. Частота утворення калусогенезу залежно від рівня плоїдності вихідного матеріалу дозволяє зазначити, що найвищий відсоток встановлено у тетраплоїдних форм сорго цукрового. Рослини в умовах in vitro диплоїдної форми мали частоту калусогенезу з листових пластинок на рівні 34,
Purpose. To determine the peculiarities of the formation of the nitrogen component and the fatty acid composition in amaranth seeds of different varieties. Methods. Laboratory (determination of the content of protein, amino acids, fatty acids, carbohydrates), calculation (integral score), mathematical and statistical. Results. The conducted studies show that amaranth seeds had a high protein content amounting to 16.1–24.7%. At the same time, it varied significantly over the studied varieties. Thus, significantly higher protein content was in amaranth variety ‘Kharkivskyi 1’ (24.7%) compared to other varieties. The lowest protein content was in ‘Helios’ variety (16.1%). It was found that phenylalanine dominates among essential amino acids in amaranth seeds, with the content ranging in the studied varieties between 981 and 1155 mg/100. The content of tryptophan was the lowest, 155–206 mg/100 g. The highest content of amino acids was determined in variety ‘Kharkivskyi 1’. The seeds of this variety exceeded the seeds of the ‘Helios’ variety by 30–33% in terms of the content of threonine, tryptophan, and isoleucine, by 17–20% of phenylalanine, methionine, and lysine, and by 11% of valine and leucine. In addition, the integral score for the seeds of this variety was also the highest. The highest integral score in the studied varieties was determined for methionine – 33.0–38.9%, for isoleucine – 23.1–30.7, tryptophan, lysine, phenylalanine – 19.4–26.3, leucine and lysine – 16.6–26.3%. The major fatty acid in amaranth seeds is linoleic, the content of which in the seeds of the studied varieties varied significantly, from 2.03 to 2.95 g/100 g. The share of linolenic acid in the seeds ranged from 43.2 to 55.5%. The content of oleic acid varied from 1.60 to 1.33%, with the share of this acid being equal to 23.5–34.0%. The content of linolenic acid was the lowest, 0.01–0.03 g/100 g, with a share of 0.2–0.6% of the total fatty acids. Conclusions. Amaranth seeds have the highest percentage of carbohydrates that reach 63.1–68.2% in the studied varieties. The protein content varies from 16.1 to 24.7%. Among essential amino acids, the content of phenylalanine in seeds of the studied varieties was the highest, 985–1155 mg/100 g. The integral score of amaranth seeds for amino acids varied from lowest to highest in the following order: leucine, lysine, threonine, tryptophan, valine, phenylalanine, isoleucine and methionine. The content of fatty acids, varied, respectively: linolenic, stearic, palmitic, oleic and linoleic. According to indicators of the nitrogen-containing component and the content of fatty acids, the seeds of the ‘Kharkivskyi 1’ variety exceed the other studied amaranth varieties.
The article is focused on the influence of fertilisation and plant care on the productivity of the black currant variety 'Siuita Kyivska'. Black currant was planted on the Rodnikovka Experimental Farm of the Uman State Agrarian University. Better conditions for the development of such signs as the number of clusters per shrub and the length of a cluster were provided under the application of mineral fertilisation as a background and foliar application of fertiliser Riverm 5%, maintaining of interrow space as clean fallow and mulching plants in the row with straw. The best characteristics of clusters were obtained with N 60 P 90 K 90 as background fertilisation. Foliar application of fertiliser Riverm 5% resulted in an increased (by 251.2−299.8) number of clusters per plant and longer (by 0.60−0.80 cm) clusters. A combination of clean fallow and application of Riverm 5% against the background of mineral fertilisation resulted in lower indicators of the fruit weight in a cluster compared to the control. This means that the yield structure of black currant under the effect of fertilisation and plant care changes towards an increase in the number of clusters, thereby reducing the number of fruits and the weight of fruits from one cluster. It was also found that foliar application of fertiliser Riverm 5% against the background of mineral fertilisation contributed to an increase in the yield of black currant. In the treatment with clean fallow between rows and mulching plants in rows, application of fertiliser Riverm 3% or 5% against the background of mineral fertilisation N 60 P 90 K 90 , the yield of fruits was 13.1 t/ha.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.