Upregulation of the activated Factor VII (FVIIa)/Tissue Factor complex, downregulation of natural anticoagulation pathways, and inhibition of fibrinolysis, are major contributors to coagulopathies associated with acute inflammation. Provision of FVIIa, and consequent downstream coagulation-related proteases, also stimulates further inflammatory changes, which can result in disseminated intravascular coagulation. Thus, the potential protective effects in vivo of a genetic-based reduction in FVII levels have been investigated in a murine model of acute inflammation, namely lipopolysaccharide (LPS)-induced lethal endotoxaemia. Mice with a total FVII deficiency do not survive the neonatal period. Therefore mice expressing low levels of FVII (FVII(tTA/tTA)), producing sufficient amounts of FVII for survival (approximately 5% of wild-type (WT) FVII), were employed to investigate in vivo pathways involved in the crosstalk between coagulation, inflammation, and survival, consequent to administration of a lethal dose of LPS. The FVII(tTA/tTA) mice presented with reduced mortality, coagulation, and inflammatory responses in comparison with similarly treated WT mice after administration of LPS. The attenuated inflammatory responses in FVII(tTA/tTA) mice were associated with downregulation of Egr-1 signalling. Administration, in vivo, of specific inhibitors of FXa and thrombin demonstrated that the inflammatory responses were unaltered in WT mice, but further reduced in FVII(tTA/tTA) mice. Therefore, a FVII deficiency enhances survival from lethal endotoxaemia both through attenuation of inflammatory responses that result directly from reduced FVIIa levels, and, indirectly, from downregulation of coagulation proteases downstream of the FVII-dependent cascade.
Severe inflammation leads to haemostatic abnormalities, such as the development of microvascular thrombi. As a result, ischaemia-related downstream organ damage can occur. The present study demonstrates that mice with a total deficiency of fibrinogen (Fg(-/-)) present with altered responses to challenge with Gram-negative lipopolysaccharide (LPS). Early survival in response to continuous LPS challenge was increased in Fg(-/-) mice and histological findings indicated that this improvement correlated with a lack of fibrin deposition in organs. Neutrophils appeared early in the lungs of challenged wild-type (WT) mice, but occurred in Fg(-/-) mice at later times. This delayed response in Fg(-/-) mice was confirmed by studies that showed a strong dependence on Fg of binding of neutrophils to endothelial cells in the presence of LPS. While cytokines were also elevated in both WT and Fg(-/-) mice, their levels were generally lower at early times in this latter group. The time course of MIP-2 expression correlated with the occurrence of pulmonary leakage after LPS challenge, which was delayed in Fg(-/-) mice. These results suggest that fibrin(ogen) plays a role as an early mediator in the cross-talk between coagulation and inflammation.
Homozygous plasminogen-deficient (Plg-/-) mice had a significantly reduced thrombolytic capacity toward intravenously injected 125I-fibrin labeled plasma clots prepared from Plg-/- murine plasma (9% +/- 3% lysis after 8 hours; (mean +/- SEM, n = 6), as compared with 82% +/- 8% in wild-type mice; P < .0001). Bolus injection of 1 mg purified murine plasminogen in 10- to 17-week-old Plg-/- mice increased the plasminogen antigen and activity levels at 8 hours to normal levels (130 +/- 5 micrograms/mL). Plasminogen administration was associated with significant restoration of thrombolytic potential (64% +/- 7% spontaneous clot lysis; P < .0001 versus lysis without plasminogen injection). Bolus injection of 1 mg plasminogen in homozygous tissue- type plasminogen activator-deficient (t-PA-/-) mice doubled the plasminogen antigen and activity levels after 8 hours and increased 125I-fibrin clot lysis at 8 hours from 13% +/- 3% to 34% +/- 5% (P = .008). Fibrinogen, t-PA antigen and alpha 2-antiplasmin activity levels after 8 hours were not significantly different in the groups with or without plasminogen injection. Injection of plasminogen induced a variable increase (on average 7- to 10-fold) of PAI-1, but no correlation with the extent of spontaneous clot lysis was observed. Histopathologic examination at the end of the experiments revealed that fibrin deposition in the liver of Plg-/- mice was slightly reduced 8 hours after bolus plasminogen injection (P = .007) and markedly reduced after 24 hours (P < .0001). Plasminogen antigen levels in liver extracts were comparable with those found in wild-type mice at 8 hours (130 +/- 20 versus 110 +/- 15 ng/mg protein) and decreased to 25 +/- 3.2 ng/mg protein at 24 hours. Thus, restoration of normal plasminogen levels in Plg-/- mice normalized the thrombolytic potential toward experimentally induced pulmonary emboli, and resulted in removal of endogenous fibrin deposits within 24 hours.
Mice genetically modified to produce low levels (~1% of wild-type) of coagulation FVII presented with echocardiographic evidence of heart abnormalities. Decreases in ventricular size and reductions in systolic and diastolic functions were found, suggestive of a restrictive cardiomyopathy, and consistent with an infiltrative myopathic process. Microscopic analysis of mouse hearts showed severe patchy fibrosis in the low-FVII mice. Haemosiderin deposition was discovered in hearts of these mice, along with increases in inflammatory cell number, ultimately resulting in widespread collagen deposition. Significant increases in mRNA levels of TGF-β, TNF-α and several matrix metalloproteinases in low-FVII mice, beginning at early ages, supported a state of cardiac remodelling associated with the fibrotic pathology. Mechanistic time course studies suggested that cardiac fibrosis in low-FVII mice originated from bleeding in heart tissue, resulting in the recruitment of leukocytes, which released inflammatory mediators and induced collagen synthesis and secretion. These events led to necrosis of cardiomyocytes and collagen deposition, characteristics of cardiac fibrosis. The results of this study demonstrated that hemorrhagic and inflammatory responses to a severe FVII deficiency resulted in the development of cardiac fibrosis, observed echocardiographically as a restrictive cardiomyopathy, with compromised ventricular diastolic and systolic functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.