Research on the Czech flora has a long tradition and yielded a large number of records on the occurrence of plants. Several independent electronic databases were established during the last three decades in order to collect and manage these records. However, this fragmentation and the different characteristics of each database strongly limit the utilization and analyses of plant distribution data. Solving these problems was one of the aims of the Centre of Excellence PLADIAS (Plant Diversity Analysis and Synthesis, 2014-2018), which is also the source of the name of the central database of the project: Pladias-Database of the Czech Flora and Vegetation (www.pladias.cz). We developed an occurrence module as a part of the Pladias database in order to integrate species occurrence data on vascular plants in the Czech Republic for use in pure and applied research. In this paper, we present a description of the structure of this database, data handling and validation, creation of distribution maps based on critically evaluated records as well as descriptions of the original databases and explorative analyses of spatiotemporal and taxonomic coverage of the integrated occurrence data. So far we have integrated more than 13 million records of almost 5 thousand taxa (species, subspecies, varieties and hybrids), which came from five large national databases, seven regional projects and records collected within the PLADIAS project. The Pladias database is now the largest set of data on vascular plant occurrence in the Czech Republic, which is subject to continuous quality control. Analyses of this database pointed
Contrary to our expectations, our long-term data showed that artificially high ungulate densities substantially increased plant species richness. Apparently, the establishment of ruderal herbs was supported by frequent disturbances and ungulate-mediated dispersal. At the same time, species richness of non-ruderal plants did not change, probably because ungulates hindered the regeneration of woody species and maintained an open forest canopy. In conclusion, high ungulate density led to the spread of ruderal species, which in turn strongly contributed to the observed shift towards nutrient-richer conditions and taxonomically more homogenous communities.
Abstract:Traditional land classifications developed on the basis of what was once prevailing expert knowledge have since largely become obsolete. We assessed expert knowledge based landscape-level units delineated in central European temperate forests: Natural Forest Areas (NFA) and Forest Vegetation Zones (FVZ). Our focus was determining to what degree these units reflect vegetation-environmental relationships. After considering as many as 49,000 plots with vegetation and 25,000 plots with environmental data within a territory of the Czech Republic, we analyzed 11,885 plots. We used multivariate statistics to discriminate between the landscape-level units. While NFAs performed extremely well, FVZ results were less successful. Classification of the environment provided better results than classification of vegetation for both the Hercynicum and Carpaticum phytogeographic part of the Czech Republic. Taking into account significance of the environment in our analysis, a delimitation of FVZs and similar vegetation-driven structures worldwide via explicit a priori stratification by tree species without consideration of environmental limits would not be supported by our analysis. We suggest not relying only on vegetation in classification analyses, but also including the significant environmental factors for direct classification of FVZ and units in particular in altered vegetation composition setting such as the central European forests. We propose a novel interpretation of FVZ via appropriate vegetation stratification throughout the environment used in conjunction with the zonal concept. Understanding of coarse-scaled vegetation-environmental relationships is not only fundamental in forest ecology and forest management, but is also essential for improving lower classification levels. Valuable expert knowledge should be combined with formal quantification, which is consistent with recent calls for advanced multidisciplinary ecological classifications in Europe and North America and for forming classifications in Asia.
Abstract:The Database of the Czech Forest Site Classification System (DCFCS; GIVD ID EU-CZ-002) is focused on data about ecological conditions and structure of forest ecosystems in the territory of the Czech Republic. This database is managed by Forest Management Institute Brandýs nad Labem. DCFCS consists of two parts, the numeric database and the GIS data. The numeric database includes all descriptive data of sample plots used in classification. Each plot is characterized by features of ecotope (information about geomorphology, climate, pedology etc.) and vegetation data (information on composition and structure). Maps of site types with the position of sample plots are represented as GIS data.Keywords: Czech Republic; Forest Site Classification. GIVD Database ID: EU-CZ-002Last update: 2012-04-28 Database of Czech Forest Classification SystemScope: Data of forest ecosystems from the Czech Republic. Geographic localisation: point coordinates less precise than GPS, up to 1 km: 100% Status
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.