Metal ions or clusters that have been bonded with organic linkers to create one-or more-dimensional structures are referred to as metal−organic frameworks (MOFs). Reticular synthesis also forms MOFs with properly designated components that can result in crystals with high porosities and great chemical and thermal stability. Due to the wider surface area, huge pore size, crystalline nature, and tunability, numerous MOFs have been shown to be potential candidates in various fields like gas storage and delivery, energy storage, catalysis, and chemical/biosensing. This study provides a quick overview of the current MOF synthesis techniques in order to familiarize newcomers in the chemical sciences field with the fast-growing MOF research. Beginning with the classification and nomenclature of MOFs, synthesis approaches of MOFs have been demonstrated. We also emphasize the potential applications of MOFs in numerous fields such as gas storage, drug delivery, rechargeable batteries, supercapacitors, and separation membranes. Lastly, the future scope is discussed along with prospective opportunities for the synthesis and application of nano-MOFs, which will help promote their uses in multidisciplinary research.
Fluorescent carbon dots (CDs) attract huge attention in analytical and bioanalytical applications due to their high selectivity towards target analytes, specificity, photostability, and quantum yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.