The work is devoted to integro-differential equations related to stochastic processes. We study the relationship between differential equations with random perturbations - stochastic differential equations (SDEs) - and deterministic equations for the probabilistic characteristics of processes determined by random perturbations. The resulting deterministic pseudodifferential equations are investigated by semigroup methods and Fourier transform methods.
Работа посвящена исследованию стохастической задачи Коши в форме Ито для систем дифференциальных уравнений с оператором A(i∂/∂x), яв-ляющимся генератором R-полугруппы в гильбертовом пространстве 2 ( ) m L . Для классов систем, корректных по Петровскому, условно-корректных и некорректных, определяемых поведением дифференциально-го оператора A(i∂/∂x), построено обобщенное по пространственной перемен-ной решение задачи в соответствующих пространствах Гельфанда-Шилова.Ключевые слова: стохастическая задача Коши; винеровский процесс; обобщенное преобразование Фурье; обобщенное решение; пространства Гельфанда-Шилова.
ВведениеОдним из современных направлений исследований в математике является изучение задач с учетом воздействия случайных факторов. Учет случайностей приводит к созданию математических моделей в форме стохастических задач. Среди них важное место занимают модели с дифференциальными уравнениями, содержащими неоднородности типа белого шума в бесконечномерных пространствах.Отправной точкой в данной тематике стало изучение задачи Коши для абстрактного стохастического уравнения первого порядка в гильбертовых пространствах ,- -значный стохастический процесс типа белого шума. Следуя теории стохастических дифференциальных уравнений в конечномерных пространствах, от дифференциальной задачи (1) c нерегулярным белым шумом, применяя конструкцию интеграла Ито в бесконечномерном случае, осуществляют переход к интегральной задаче:c непрерывной «первообразной» по t от белого шума -винеровским процессом ( ) W t , который определяется аксиоматически. Результаты многочисленных авторов по исследованию интегральной задачи (2) упорядочены и приведены в монографии [1]. В теории стохастических задач уравнение (2) принято кратко записывать в форме дифференциалов:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.