The paper proposes a concept of building a digital twin based on the reinforcement learning method. This concept allows implementing an accurate digital model of an electrical network with bidirectional automatic data exchange, used for modeling, optimization, and control. The core of such a model is an agent (potential digital twin). The agent, while constantly interacting with a physical object (electrical grid), searches for an optimal strategy for active network management, which involves short-term strategies capable of controlling the power supplied by generators and/ or consumed by the load to avoid overload or voltage problems. Such an agent can verify its training with the initial default policy, which can be considered as a teacher’s advice. The effectiveness of this approach is demonstrated on a test 77-node scheme and a real 17-node network diagram of the Akademgorodok microdistrict (Irkutsk) according to the data from smart electricity meters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.