One of the most promising approaches for complex technical systems analysis employs ensemble methods of classification. Ensemble methods enable to build a reliable decision rules for feature space classification in the presence of many possible states of the system. In this paper, novel techniques based on decision trees are used for evaluation of the reliability of the regime of electric power systems. We proposed hybrid approach based on random forests models and boosting models. Such techniques can be applied to predict the interaction of increasing renewable power, strage devices and swiching of smart loads from intelligent domestic appliances, storage heaters and air-conditioning units and electric vehicles with grid for enhanced decision making. The ensemble classification methods were tested on the modified 118-bus IEEE power system showing that proposed technique can be employed to examine whether the power system is secured under steady-state operating conditions.
The importance of efficient utilization of biomass as renewable energy in terms of global warming and resource shortages are well known and documented. Biomass gasification is a promising power technology especially for decentralized energy systems. Decisive progress has been made in the gasification technologies development during the last decade. This paper deals with the control and optimization problems for an isolated microgrid combining the renewable energy sources (solar energy and biomass gasification) with a diesel power plant. The control problem of an isolated microgrid is formulated as a Markov decision process and we studied how reinforcement learning can be employed to address this problem to minimize the total system cost. The most economic microgrid configuration was found, and it uses biomass gasification units with an internal combustion engine operating both in single-fuel mode (producer gas) and in dual-fuel mode (diesel fuel and producer gas).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.