In humans, sleep regulation is tightly linked to social times that assign local time to events, such as school, work, or meals. The impact of these social times, collectively—social time pressure, on sleep has been studied epidemiologically via quantification of the discrepancy between sleep times on workdays and those on work-free days. This discrepancy is known as the social jetlag (SJL). COVID-19-mandated social restrictions (SR) constituted a global intervention by affecting social times worldwide. We launched a Global Chrono Corona Survey (GCCS) that queried sleep–wake times before and during SR (preSR and inSR). 11,431 adults from 40 countries responded between April 4 and May 6, 2020. The final sample consisted of 7517 respondents (68.2% females), who had been 32.7 ± 9.1 (mean ± sd) days under SR. SR led to robust changes: mid-sleep time on workdays and free days was delayed by 50 and 22 min, respectively; sleep duration increased on workdays by 26 min but shortened by 9 min on free days; SJL decreased by ~ 30 min. On workdays inSR, sleep–wake times in most people approached those of their preSR free days. Changes in sleep duration and SJL correlated with inSR-use of alarm clocks and were larger in young adults. The data indicate a massive sleep deficit under pre-pandemic social time pressure, provide insights to the actual sleep need of different age-groups and suggest that tolerable SJL is about 20 min. Relaxed social time pressure promotes more sleep, smaller SJL and reduced use of alarm clocks.
Summary Light is an important regulator of daily human physiology in providing time‐of‐day information for the circadian clock to stay synchronised with the 24‐hr day. The coronavirus disease 2019 (COVID‐19) pandemic led to social restrictions in many countries to prevent virus spreading, restrictions that dramatically altered daily routines and limited outdoor daylight exposure. We previously reported that sleep duration increased, social jetlag decreased, and mid‐sleep times delayed during social restrictions (Global Chrono Corona Survey, N = 7,517). In the present study, we investigated in the same dataset changes in wellbeing and their link to outdoor daylight exposure, and sleep–wake behaviour. In social restrictions, median values of sleep quality, quality of life, physical activity and productivity deteriorated, while screen time increased, and outdoor daylight exposure was reduced by ~58%. Yet, many survey participants also reported no changes or even improvements. Larger reductions in outdoor daylight exposure were linked to deteriorations in wellbeing and delayed mid‐sleep times. Notably, sleep duration was not associated with outdoor daylight exposure loss. Longer sleep and decreased alarm‐clock use dose‐dependently correlated with changes in sleep quality and quality of life. Regression analysis for each wellbeing aspect showed that a model with six predictors including both levels and their deltas of outdoor daylight exposure, sleep duration and mid‐sleep timing explained 5%–10% of the variance in changes of wellbeing scores (except for productivity). As exposure to daylight may extenuate the negative effects of social restriction and prevent sleep disruption, public strategies during pandemics should actively foster spending more daytime outdoors.
The review presents modern ideas about the origin of tumor vessels and the features of their morphology. The various approaches to the classification of tumor vessel types and to the assessment of their clinical and prognostic significance are described. Also, the main problems associated with the use of angiogenesis blockers in the treatment of malignancies and their possible solutions are reflected in the review.
The purpose of the study was to systematize and summarize modern ideas about the role of hypoxia in the development of tumor radioresistance.Material and Methods. PubMed, eLibrary and Springer databases were used to identify reviews published from 1953 to 2020, of which 57 were selected to write our review.Results. Radiation therapy is one of the most important components in cancer treatment. The major drawback of radiation therapy is the development radiation resistance in cancerous cells and secondary malignancies. The mechanisms of cancer radioresistance are very complicated and affected by many factors, of which hypoxia is the most important. Hypoxia is able to activate the mechanisms of angiogenesis, epithelial-mesenchymal transformation and contribute to the formation of the pool of cancer stem cell, which are characterized by chemo- and radioresistance. In turn, the severity of hypoxia largely dependent on tumor blood flow. Moreover, not only the quantitative but also the qualitative characteristics of blood vessels can affect the development of tissue hypoxia in the tumor.Conclusion. A comprehensive assessment of the severity of hypoxia, as well as characteristics of angiogenesis and EMT can contribute to a better understanding of the mechanisms of development of cancer radioresistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.