Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UV/blue and UV/green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently.
Background The processing of optic flow in the pretectum/accessory optic system allows animals to stabilize retinal images by executing compensatory optokinetic and optomotor behavior. The success of this behavior depends on the integration of information from both eyes to unequivocally identify all possible translational or rotational directions of motion. However, it is still unknown whether the precise direction of ego-motion is already identified in the zebrafish pretectum or later in downstream premotor areas. Results Here, we show that the zebrafish pretectum and tectum each contain four populations of motion-sensitive direction-selective (DS) neurons, with each population encoding a different preferred direction upon monocular stimulation. In contrast, binocular stimulation revealed the existence of pretectal and tectal neurons that are specifically tuned to only one of the many possible combinations of monocular motion, suggesting that further downstream sensory processing might not be needed to instruct appropriate optokinetic and optomotor behavior. Conclusion Our results suggest that local, task-specific pretectal circuits process DS retinal inputs and carry out the binocular sensory computations necessary for optokinetic and optomotor behavior. Electronic supplementary material The online version of this article (10.1186/s12915-019-0648-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.