We find a bound on the genus of an HNN‐extension HNN(K, A, f) with a finite base group K. We also give sufficient conditions when the genus is 1, i.e. when HNN(K, A, f) is determined by its profinite completion up to isomorphism with respect to the family of all virtually free groups.
A finitely generated residually finite group G is an OE-group if any action of its profinite completion G on a profinite tree with finite edge stabilizers admits a global fixed point. In this paper, we study the profinite genus of free products G 1 * H G 2 of OE-groups G 1 , G 2 with finite amalgamation H. Given such G 1 , G 2 , H we give precise formulas for the number of isomorphism classes of G 1 * H G 2 and of its profinite completion. We compute the genus of G 1 * H G 2 and list various situations when the formula for the genus simplifies.
Contagem deárvores geradoras de um grafo completo Counting of spanning trees of a complete graph Resumo Em 1889, Arthur Cayley publicou um artigo com uma fórmula para a contagem deárvores geradoras (spanning) de um grafo completo. Esse teorema diz que: Sejam n ∈ N e Kn o grafo completo com n vértices. Então o número deárvores geradoras de Kné dado por n n−2. O presente trabalho constitui-se de uma breve revisão da literatura sobre os conceitos e resultados básicos da teoria de grafos e uma demonstração detalhada da Fórmula de Cayley, dada pela construção minuciosa de uma bijeção entre o conjunto deárvores geradoras e um conjunto especial de sequências numéricas. Por fim, trazemos um algoritmo, que descreve uma forma precisa para a construção dasárvores geradoras obtidas de Kn a partir de sequências de Cayley-Prüfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.