Wind energy is a renewable energy resource that has increased in usage in most countries. Site selection for the establishment of large wind turbines, called wind farms, like any other engineering project, requires basic information and careful planning. This study assessed the possibility of establishing wind farms in Ardabil province in northwestern Iran by using a combination of analytic network process (ANP) and decision making trial and evaluation laboratory (DEMATEL) methods in a geographical information system (GIS) environment. DEMATEL was used to determine the criteria relationships. The weights of the criteria were determined using ANP and the overlaying process was done on GIS. Using 13 information layers in three main criteria including environmental, technical and economical, the land suitability map was produced and reclassified into 5 equally scored divisions from least suitable to most suitable areas. The results showed that about 6.68% of the area of Ardabil province is most suitable for establishment of wind turbines. Sensitivity analysis shows that significant portions of these most suitable zones coincide with suitable divisions of the input layers. The efficiency and accuracy of the hybrid model (ANP-DEMATEL) was evaluated and the results were compared to the ANP model. The sensitivity analysis, map classification, and factor weights for the two methods showed satisfactory results for the ANP-DEMATEL model in wind power plant site selection.
Main global environment and ecological functions and structure affected by land use/cover changes (LUCC). Analysis of the dynamic LUCC can be very useful in biosphere reserves (BRs) management. The Land use and cover (LULC) spatio-temporal changes in the Arasbaran BR were classified (as Agricultural, Forest and Barren/Range lands), and compared with future spatial pattern (simulated using the CA-Markov model) to evaluate qualitative and quantitative changes of this BR LULC over time (1989, 2000 and 2013 with 2037). This analysis consisted of the whole area and also in respect to each of the zones within the Arasbaran BR (as a new approach to assess BR management quality). Based on this approach, the LUCC monitoring alongside the future simulation offers an early warning system that also shows us trends and consequences of the changes for the whole BR as well as for each zone (including the core zone) of BR separately. The results show a downward trend for forestland at the expense of increasing agricultural and barren/range land surface areas. Furthermore this loss of remnant forest vegetation is not only true for the whole BR (; including its buffer and transitional zones) but is happening within the core zone where it will probably continue more severely in the near future. The results demonstrate the priority need for more severe regulations regarding protection of this BR against LUCCs and for its valuable core zone forest LULC in particular.
Regulating ecosystem services provided by urban forests are of great importance for the quality of life among city dwellers. To reach a maximum contribution to well-being in cities, the urban regulating ecosystem services (URES) must match with the demands in terms of space and time. If we understand the matches or mismatches between the current urban dwellers’ desired quality conditions (demand) and the supply of URES by urban forests (UF) in the cities, this will facilitate integrating the concepts of ecosystem services in urban planning and management, but such an assessment has suffered from major knowledge limitations. Since it is complex and problematic to identify the direct demands for URES and the spatiotemporal patterns therein, improving the demand indicators can help to determine the actual requirements. In this paper, a methodological approach based on indicators is presented and demonstrated for two important URES: air quality improvement and global climate change mitigation provided by urban trees and shrubs. Four air quality standards and greenhouse gas reduction targets were used and compared to supplies of the URES in Tabriz, Iran. Our results show that the mean contribution of the URES supply to air quality standards and greenhouse gas reduction targets is modest. Hence, in Tabriz, there is a strong mismatch between demand and supply. Mismatches at the city scale will have to be reduced by both a reduction in pollutant emissions and an increased provisioning of URES supply through urban greenery. The presented assessment approach and the results for Tabriz make it explicit how different the demands and supplies of the two studied URES are, and we expect similar mismatches in many other cities. Therefore, our approach, relatively simple but still realistic and easy-to-apply, can raise awareness about, and the utility of, the ecosystem services concepts for urban planning and policymaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.