Curcumin is an effective wound healing agent in burn therapy, but due to its low bioavailability, it is required to be formulated for topical therapy. Liposomal nanocarriers are developed as stable and efficient dermal delivery systems. In this study, we prepared curcumin-propylene glycol liposomes (Cur-PgL) to treat animals subjected to second degree burns. The characterization tests confirmed the production of monodisperse nanoliposomes of average size of about 145 nm with high entrapment efficiency percentage and a sustained release behavior. TEM analysis of nanocarriers showed no aggregation in long time storage up to 60 days. The biocompatibility of the Cur-PgL formulation was evaluated by ISO standards. We found that Cur-PgL 0.3% was the effective dose in injured rats without any side effects on intact skin. The cytotoxicity of the Cur-PgL 0.3% nanovesicles was also assessed on human dermal fibroblast (HDF) cells. The results showed no detectable cytotoxicity, but considerable cytotoxicity was observed in higher concentration of 1.5 and 3 mg/ml of free and PgL forms of curcumin. Eight days of application of Cur-PgL on burned rats resulted in a significant (P<0.001) recovery of wound repair parameters, and after 18 days, wound contraction occurred significantly (P < 0.001) compared to the other groups. The antibacterial activity of the Cur-PgL formulation was found to be similar to the silver sulfadiazine (SSD) cream 1% regarding the inhibition of the bacterial growth. In conclusion, the low dose of curcumin nanoliposomal formulation efficiently improved injuries and infections of burn wounds and it can be considered in burn therapy.
Leonurus cardiaca, commonly known as motherwort, is a member of the Lamiaceae family. It has a number of interesting biological activities, for example, sedative and hypotensive, antioxidant, anti-inflammatory, and antimicrobial activities. The aim of the present study was to investigate the effect of alcoholic extract of aerial part of Leonurus cardiaca on nociceptive response using formalin, tail flick, and hot plate tests in mice. The acute treatment of mice with an ethanolic extract at doses of 500 and 250 mg/kg by intraperitoneal administration produced a significant antinociceptive in the first and second phases of formalin test, respectively. The hot plate and tail flick tests showed an increase in the antinociceptive effect at dose 500 mg/kg. These results suggest that Leonurus cardiaca possesses central and peripheral antinociceptive actions.
It has been proposed carbon tetrachloride (CCl 4 ) intoxication due to the production of free radicals and serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) overload results hepatotoxicity. Phosphatidylserine (PS) has shown antioxidant activity in numerous studies.Therefore, this study was aimed to investigate the effects of PS liposomes treatment against the CCl 4 -induced hepatotoxicity in a rat model. Male Wistar rats were treated with PS (10 mg/kg, oral) or phosphatidylcholine liposomes (PC) (10 mg/kg, oral) for 3 days before CCl 4 (2 ml/kg; ip once on the third day) injection. The serum level of ALT, AST, and ALP were measured. Also, antioxidant assays were performed.Administration of PS with CCl 4 significantly inhibited alterations in the serum levels of AST, ALP ( ** P < 0.01), and ALT ( *** P < 0.001) compared with control group. Furthermore, measurement of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) levels indicated that PS significantly reduced reactive oxygen species. The results of the present study showed the hepatoprotective effects of PS against CCl 4 -induced hepatotoxicity in rats.
K E Y W O R D Santioxidant, CCl 4 , hepatoprotective, liposome, phosphatidylserine
Cannabinoid inverse agonists possess antidepressant-like properties, but the mechanism of this action is unknown. Numerous studies have reported the interaction between opioid and cannabinoid pathways. In this study, acute foot-shock stress was used in mice to investigate the involvement of the opioid pathway in the antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251. Stress was induced by intermittent foot-shock stimulation for 30 min. Then, using the forced swimming test (FST) and tail suspension test (TST), the immobility time was measured. Results show that the immobility time was significantly prolonged in animals subjected to foot-shock stress, compared with non-stressed controls (P < 0.01). Also, the serum corticosterone level was significantly increased after stress induction (P < 0.001). Administration of AM-251 (0.5 and 0.3 mg/kg, intraperitoneally (i.p.)), significantly decreased the immobility time of stressed mice in the FST (P < 0.001 and P < 0.01, respectively) and TST (P < 0.01 and P < 0.05, respectively). The lowest dose of AM-251 (0.1 mg/kg), naltrexone (0.3 mg/kg), and morphine (1.0 mg/kg) did not show any significant effect on stressed animals (P > 0.05). Co-administration of AM-251 with sub-effective dose of naltrexone decreased the effective dose of this cannabinoid inverse agonist, to 0.1 mg/kg (P < 0.01). On the other hand, administration of the sub-effective dose of morphine reversed the anti-immobility effect of AM-251 (0.5 mg/kg; P < 0.001). In conclusion, the present study for the first time reveals the possible role of opioid signalling in the antidepressant-like properties of AM-251 in a foot-shock stress model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.