By interacting with components of the human host, including extracellular matrix (ECM) proteins, Streptococcus pneumoniae has evolved various strategies for colonization. Here, we characterized the interaction of pneumococci with the adhesive glycoprotein vitronectin and the contribution of this protein to pneumococcal uptake by host cells in an integrin-dependent manner. Specific interaction of S. pneumoniae with the heparin-binding sites of purified multimeric vitronectin was demonstrated by flow cytometry analysis. Host-cell-bound vitronectin promoted pneumococcal adherence to and invasion into human epithelial and endothelial cells. Pneumococci were trapped by microspike-like structures, which were induced upon contact of pneumococci with host-cell-bound vitronectin. αvβ3 integrin was identified as the major cellular receptor for vitronectin-mediated adherence and uptake of pneumococci. Ingestion of pneumococci by host cells via vitronectin required a dynamic actin cytoskeleton and was dependent on integrin-linked kinase (ILK), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt), as demonstrated by gene silencing or in inhibition experiments. In conclusion, pneumococci exploit the vitronectin–αvβ3-integrin complex as a cellular receptor for invasion and this integrin-mediated internalization requires the cooperation between the host signalling molecules ILK, PI3K and Akt.
Pneumococcal surface protein C (PspC) of Streptococcus pneumoniae is a key virulence factor that mediates adhesion to host cells and immune evasion of the host complement. PspC binds the host immune and complement regulator factor H, which is composed of 20 short consensus repeats (SCR). This interaction contributes to pneumococcal virulence. In this study, we identified within the factor H protein two separate PspC binding regions, which were localized to SCR8–11 and SCR19–20, by using recombinant factor H deletion constructs for Western blotting assays and surface plasmon resonance studies. A detailed analysis of binding epitopes in these SCR by peptide spot arrays identified several linear binding regions within the sequences of SCR8–11 and SCR19–20. In addition, the factor H binding site was mapped within the pneumococcal PspC protein to a 121-aa-long stretch positioned in the N terminus (residues 38–158). Factor H attached to the surface of pneumococci via PspC significantly enhanced pneumococcal adherence to host epithelial and endothelial cells. This adhesion was specific and was blocked with a truncated N-terminal factor H-binding fragment of PspC. In conclusion, the acquisition of factor H by pneumococci via PspC occurs via two contact sites located in SCR8–11 and SCR19–20, and factor H attached to the surface of the pneumococcus promotes adhesion to both host epithelial and endothelial cells.
Background: Pneumococci have developed multiple strategies to infect the host. Results: PepO is a ubiquitously expressed pneumococcal protein that interacts with host proteins and facilitates host cell invasion and evasion of innate immunity. Conclusion: PepO is a plasminogen-and fibronectin-binding pneumococcal invasin. Significance: Understanding the mechanism of pneumococcal interaction with host aids designing better therapeutical strategies and gaining control over the pathogen.
Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8 -11 and SCR19 -20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19 -20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase.Streptococcus pneumoniae (pneumococci) colonize as harmless commensals the mucosal epithelium of the human upper respiratory tract. However, pneumococci are also harmful pathogens causing severe infections in humans that are associated with high mortality rates and death. In addition to their ability to cause severe local infections such as otitis media and sinusitis, pneumococci cause life-threatening invasive diseases, including community-acquired pneumonia, sepsis, and meningitis (1-4). Pneumococci have evolved several strategies to adhere to host cells and to evade the host complement and immune attack, both representing prerequisites for pneumococci to disseminate into the lungs and bloodstream or to survive in various host niches. The key bacterial players are virulence determinants that are, with the exception of the toxin pneumolysin, displayed on the pneumococcal cell wall (3, 5, 6). To avoid complement-mediated bacterial lysis, pneumococci recruit, similar to other pathogens, the central complement regulators Factor H and C4b-binding protein (7, 8). The major Factor H-binding protein of Streptococcus pneumoniae is the choline-binding protein PspC (pneumococcal surface protein C), which represents a polymorphi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.