Alumina‐chrome (Al2O3–Cr2O3) refractories with Al2O3:Cr2O3 molar ratio 1:1 were synthesized in the temperature range of 1400–1700°C by conventional solid–oxide reaction route. The effect of different aluminas (viz., hydrated and calcined) on the densification, microstructure, and properties of Al2O3–Cr2O3 refractories was investigated without changing the Cr2O3 source. The starting materials were analyzed to determine the chemical composition, mineralogy, density, surface area, and particle size. Sintered materials were characterized in terms of densification, phase assemblage, and mechanical strength at room temperature and at higher temperatures. Microstructural evolution at different sintering temperature was correlated with sintering characteristics. It can be concluded that the Al2O3–Cr2O3 refractories prepared with hydrated alumina as Al2O3 source show better densification and hot mechanical strength than corresponding calcined variety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.