Adversary thinking is an essential skill for cybersecurity experts, enabling them to understand cyber attacks and set up effective defenses. While this skill is commonly exercised by Capture the Flag games and hands-on activities, we complement these approaches with a key innovation: undergraduate students learn methods of network attack and defense by creating educational games in a cyber range. In this paper, we present the design of two courses, instruction and assessment techniques, as well as our observations over the last three semesters. The students report they had a unique opportunity to deeply understand the topic and practice their soft skills, as they presented their results at a faculty open day event. Their peers, who played the created games, rated the quality and educational value of the games overwhelmingly positively. Moreover, the open day raised awareness about cybersecurity and research and development in this field at our faculty. We believe that sharing our teaching experience will be valuable for instructors planning to introduce active learning of cybersecurity and adversary thinking.
This Innovative Practice full paper describes a technical innovation for scalable teaching of cybersecurity handson classes using interactive learning environments. Hands-on experience significantly improves the practical skills of learners. However, the preparation and delivery of hands-on classes usually do not scale. Teaching even small groups of students requires a substantial effort to prepare the class environment and practical assignments. Further issues are associated with teaching large classes, providing feedback, and analyzing learning gains. We present our research effort and practical experience in designing and using learning environments that scale up hands-on cybersecurity classes. The environments support virtual networks with full-fledged operating systems and devices that emulate realworld systems.
This Research To Practice Full Paper presents how learning experience influences students' capability to learn and their motivation for further learning. Although each student is different, standard instruction methods do not adapt to individual students. Adaptive learning reverses this practice and attempts to improve the student experience. While adaptive learning is wellestablished in programming, it is rarely used in cybersecurity education. This paper is one of the first works investigating adaptive learning in cybersecurity training. First, we analyze the performance of 95 students in 12 training sessions to understand the limitations of the current training practice. Less than half of the students (45 out of 95) completed the training without displaying any solution, and only in two sessions, all students completed all phases. Then, we simulate how students would proceed in one of the past training sessions if it would offer more paths of various difficulty. Based on this simulation, we propose a novel tutor model for adaptive training, which considers students' proficiency before and during an ongoing training session. The proficiency is assessed using a pre-training questionnaire and various in-training metrics. Finally, we conduct a case study with 24 students and new training using the proposed tutor model and adaptive training format. The results show that the adaptive training does not overwhelm students as the original static training format. In particular, adaptive training enables students to enter several alternative training phases with lower difficulty than the phases in the original training.The proposed adaptive format is not restricted to particular training used in our case study. Therefore, it can be applied to practicing any cybersecurity topic or even in other related computing fields, such as networking or operating systems. Our study indicates that adaptive learning is a promising approach for improving the student experience in cybersecurity education. We also highlight diverse implications for educational practice that improve students' experience.
Many starting teachers of computer science have great professional skill but often lack pedagogical training. Since providing expert mentorship directly during their lessons would be quite costly, institutions usually offer separate teacher training sessions for novice instructors. However, the reflection on teaching performed with a significant delay after the taught lesson limits the possible impact on teachers. To bridge this gap, we introduced a weekly semi-structured reflective practice to supplement the teacher training sessions at our faculty. We created a paper diary that guides the starting teachers through the process of reflection. Over the course of the semester, the diary poses questions of increasing complexity while also functioning as a reference to the topics covered in teacher training. Piloting the diary on a group of 25 novice teaching assistants resulted in overwhelmingly positive responses and provided the teacher training sessions with valuable input for discussion. The diary also turned out to be applicable in a broader context: it was appreciated and used by several experienced university teachers from multiple faculties and even some high-school teachers. The diary is freely available online, including source and print versions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.