Optical coherence tomography (OCT) provides non-contact, rapid in vivo imaging of ocular structures, and has become a key part of evaluating the anterior segment of the eye. Over the years, improvements to technology have increased the speed of capture and resolution of images, leading to the increasing impact of anterior segment OCT imaging on clinical practice. In this review, we summarize the historical development of anterior segment OCT, and provide an update on the research and clinical applications of imaging the ocular surface, cornea, anterior chamber structures, aqueous outflow system, and most recently anterior segment vessels. We also describe advancements in anterior segment OCT technology that have improved understanding with greater detail, such as tear film in dry eye disease evaluation, intra-operative real-time imaging for anterior segment surgery, and aqueous outflow with angle assessment for glaucoma. Improvements to image processing and software have also improved the ease and utility of interpreting anterior segment OCT images in everyday clinical practice. Future developments include refinement of assessing vascular networks for the anterior segment, in vivo ultra-high resolution anterior segment optical coherence tomography with histology-like detail, en-face image with 3-dimensional reconstruction as well as functional extensions of the technique.
We present imaging of corneal pathologies using optical coherence tomography (OCT) with high resolution. To this end, an ultrahigh-resolution spectral domain OCT (UHR-OCT) system based on a broad bandwidth Ti:sapphire laser is employed. With a central wavelength of 800 nm, the imaging device allows to acquire OCT data at the central, paracentral and peripheral cornea as well as the limbal region with 1.2 µm x 20 µm (axial x lateral) resolution at a rate of 140 000 A-scans/s. Structures of the anterior segment of the eye, not accessible with commercial OCT systems, are visualized. These include corneal nerves, limbal palisades of Vogt as well as several corneal pathologies. Cases such as keratoconus and Fuchs's endothelial dystrophy as well as infectious changes caused by diseases like Acanthamoeba keratitis and scarring after herpetic keratitis are presented. We also demonstrate the applicability of our system to visualize epithelial erosion and intracorneal foreign body after corneal trauma as well as chemical burns. Finally, results after Descemet's membrane endothelial keratoplasty (DMEK) are imaged. These clinical cases show the potential of UHR-OCT to help in clinical decision-making and follow-up. Our results and experience indicate that UHR-OCT of the cornea is a promising technique for the use in clinical practice, but can also help to gain novel insight in the physiology and pathophysiology of the human cornea.
Deep learning has dramatically improved object recognition, speech recognition, medical image analysis and many other fields. Optical coherence tomography (OCT) has become a standard of care imaging modality for ophthalmology. We asked whether deep learning could be used to segment cornea OCT images. Using a custom-built ultrahigh-resolution OCT system, we scanned 72 healthy eyes and 70 keratoconic eyes. In total, 20,160 images were labeled and used for the training in a supervised learning approach. A custom neural network architecture called CorneaNet was designed and trained. Our results show that CorneaNet is able to segment both healthy and keratoconus images with high accuracy (validation accuracy: 99.56%). Thickness maps of the three main corneal layers (epithelium, Bowman's layer and stroma) were generated both in healthy subjects and subjects suffering from keratoconus. CorneaNet is more than 50 times faster than our previous algorithm. Our results show that deep learning algorithms can be used for OCT image segmentation and could be applied in various clinical settings. In particular, CorneaNet could be used for early detection of keratoconus and more generally to study other diseases altering corneal morphology.
The findings of this study indicate that single instillation of TH-SH and HA eye drops increases TFT in patients with dry eye disease. The data also indicate longer corneal residence of the TH-containing eye drops. The effect of multiple instillation and long-term use of artificial tears on TFT warrants further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.