We consider the problem of area coverage for robot teams operating under resource constraints, while modeling spatio-temporal environmental phenomena. The aim of the mobile robot team is to avoid exhaustive search and only visit the most important locations that can improve the prediction accuracy of a spatio-temporal model. We use a Gaussian Process (GP) to model spatially varying and temporally evolving dynamics of the target phenomenon. Each robot of the team is allocated a dedicated search area wherein the robot autonomously optimizes its prediction accuracy. We present this as a Decentralized Computation and Centralized Data Fusion approach wherein the trajectory sampled by the robot is generated using our proposed Resource-Constrained Decentralized Active Sensing (RC-DAS). Since each robot possesses its own independent prediction model, at the end of robot's mission time, we fuse all the prediction models from all robots to have a global model of the spatio-temporal phenomenon. Previously, all robots and GPs needed to be synchronized, such that the GPs can be jointly trained. However, doing so defeats the purpose of a fully decentralized mobile robot team. Thus, we allow the robots to independently gather new measurements and update their model parameters irrespective of other members of the team. To evaluate the performance of our model, we compare the trajectory traced by the robot using active and passive (e.g., nearest neighbor selection) sensing. We compare the performance and cost incurred by a resource constrained optimization with the unconstrained entropy maximization version
With the goal of performing exascale computing, the importance of input/output (I/O) management becomes more and more critical to maintain system performance. While the computing capacities of machines are getting higher, the I/O capabilities of systems do not increase as fast. We are able to generate more data but unable to manage them efficiently due to variability of I/O performance. Limiting the requests to the parallel file system (PFS) becomes necessary. To address this issue, new strategies are being developed such as online in situ analysis. The idea is to overcome the limitations of basic postmortem data analysis where the data have to be stored on PFS first and processed later. There are several software solutions that allow users to specifically dedicate nodes for analysis of data and distribute the computation tasks over different sets of nodes. Thus far, they rely on a manual resource partitioning and allocation by the user of tasks (simulations, analysis). In this work, we propose a memory-constraint modelization for in situ analysis. We use this model to provide different scheduling policies to determine both the number of resources that should be dedicated to analysis functions and that schedule efficiently these functions. We evaluate them and show the importance of considering memory constraints in the model. Finally, we discuss the different challenges that have to be addressed to build automatic tools for in situ analytics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.