Modern and coming generations of electric and automated vehicles are characterized by higher requirements to robust and fault-tolerant operation of chassis systems independently from driving situations and road conditions. In this regard, this paper introduces an adaptive continuous wheel slip control (WSC) developed for the sport utility vehicle equipped with a high-dynamic decoupled electrohydraulic brake system. The system architecture, mathematical formulation of the WSC and state estimator as well as the experimental WSC validation is described in this paper. The focus is given on three continuous WSC strategies based on proportional integral (PI), sliding-mode PI and integral-sliding-mode control techniques. The proposed WSC also includes the state and parameter estimator for the adaptation of the reference wheel slip depending on current road conditions and using the standard on-board vehicle sensors and extremum-seeking algorithm. Adaptability and robustness of all WSC configurations were confirmed by the road experiments performed on low-and highµ surfaces with mandatory condition of the same controls adjustments for all test cases. Tests show an enhancement of the vehicle safety and ride quality, compared to the vehicle with the rule-based WSC control.
Since their introduction, anti-lock braking systems (ABS) have mostly relied on heuristic, rule-based control strategies. ABS performance, however, can be significantly improved thanks to many recent technological developments. This work presents an extensive review of the state of the art to verify such a statement and quantify the benefits of a new generation of wheel slip control (WSC) systems. Motivated by the state of the art, as a case study, a nonlinear model predictive control (NMPC) design based on a new load-sensing technology was developed. The proposed ABS was tested on Toyota's high-end vehicle simulator and was benchmarked against currently applied industrial controller. Additionally, a comprehensive set of manoeuvres were deployed to assess the performance and robustness of the proposed NMPC design. The analysis showed substantial reduction of the braking distance and better steerability with the proposed approach. Furthermore, the proposed design showed comparable robustness against external factors to the industrial benchmark. INDEX TERMS Road vehicles, vehicle safety, antilock braking system, wheel slip control, model predictive control.
This paper presents an in-depth analysis of the application of different techniques for vehicle state and tyre force estimation using the same experimental data and vehicle models, except for the tyre models. Four schemes are demonstrated: (i) an Extended Kalman Filter (EKF) scheme using a linear tyre model with stochastically adapted cornering stiffness, (ii) an EKF scheme using a Neural Network (NN) datadriven linear tyre model, (iii) a tyre model-less Suboptimal-Second Order Sliding Mode (S-SOSM) scheme, and (iv) a Kinematic Model (KM) scheme integrated in an EKF. The estimation accuracy of each method is discussed. Moreover, guidelines for each method provide potential users with valuable insight into key properties and points of attention.
The study presented in this paper discusses developments in the area of anti-lock braking control for full electric vehicles. The main contributions of the paper are the development and experimental validation of the combined electric and hydraulic brake system with application of a continuous anti-lock braking system, which is expected to be more effective than the existing industrial solutions. It covers the topic of high-performance braking and driving comfort under a direct slip control function. The research is related to the full electric sport utility vehicle equipped with four individual on-board motors and a decoupled electrohydraulic brake system. The brake controller architecture includes functions of the continuous anti-lock braking system strategy, a brake blending algorithm aimed at minimization of the friction brake torque and operational limitations of the electric brakes. The developed brake controller was subjected to different validation procedures but, within the framework of this paper, emergency braking tests on a wet surface with a low coefficient of friction are considered. The results obtained demonstrate significant improvements in the braking performance, the driving comfort and the control performance for continuous anti-lock braking control of the electric vehicle compared with those of diverse vehicle configurations and, in particular, with those of a sport utility vehicle of the same type equipped with an internal-combustion engine and a conventional hydraulic brake system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.