Complex gene-environment interactions are considered important in the development of obesity. The composition of the gut microbiota can determine the efficacy of energy harvest from food and changes in dietary composition have been associated with changes in the composition of gut microbial populations. The capacity to explore microbiota composition was markedly improved by the development of metagenomic approaches, which have already allowed production of the first human gut microbial gene catalogue and stratifying individuals by their gut genomic profile into different enterotypes, but the analyses were carried out mainly in non-intervention settings. To investigate the temporal relationships between food intake, gut microbiota and metabolic and inflammatory phenotypes, we conducted diet-induced weight-loss and weight-stabilization interventions in a study sample of 38 obese and 11 overweight individuals. Here we report that individuals with reduced microbial gene richness (40%) present more pronounced dys-metabolism and low-grade inflammation, as observed concomitantly in the accompanying paper. Dietary intervention improves low gene richness and clinical phenotypes, but seems to be less efficient for inflammation variables in individuals with lower gene richness. Low gene richness may therefore have predictive potential for the efficacy of intervention.
Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) is a representative of the group of lactic acid-producing bacteria, mainly known for its worldwide application in yogurt production. The genome sequence of this bacterium has been determined and shows the signs of ongoing specialization, with a substantial number of pseudogenes and incomplete metabolic pathways and relatively few regulatory functions. Several unique features of the L. bulgaricus genome support the hypothesis that the genome is in a phase of rapid evolution. (i) Exceptionally high numbers of rRNA and tRNA genes with regard to genome size may indicate that the L. bulgaricus genome has known a recent phase of important size reduction, in agreement with the observed high frequency of gene inactivation and elimination; (ii) a much higher GC content at codon position 3 than expected on the basis of the overall GC content suggests that the composition of the genome is evolving toward a higher GC content; and (iii) the presence of a 47.5-kbp inverted repeat in the replication termination region, an extremely rare feature in bacterial genomes, may be interpreted as a transient stage in genome evolution. The results indicate the adaptation of L. bulgaricus from a plant-associated habitat to the stable protein and lactose-rich milk environment through the loss of superfluous functions and protocooperation with Streptococcus thermophilus.bulgaricus) is one of the economically most important representatives of the heterogeneous group of lactic acid bacteria, with a worldwide application in yogurt production. Yogurt has long been recognized as a nutritious, natural, and safe component of a healthy diet and is at the basis of the concept of probiotics (1, 2). A well documented health benefit of the consumption of yogurt containing live L. bulgaricus and Streptococcus thermophilus is an attenuation of lactose intolerance (3). In addition, immune modulation and diarrhea-alleviating effects have been reported (4), and both L. bulgaricus and S. thermophilus have been implicated in these effects (3,5). During yogurt fermentations protocooperation between these two bacteria results in an accelerated acidification, but the mechanisms involved are not completely understood (6).Among the lactic acid bacteria, L. bulgaricus belongs to the acidophilus complex, a group of lactobacilli related to Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus gasseri, which have been used as probiotic cultures. Although within this group L. bulgaricus is considered unique because of its atypical GC content, until recently the lack of tools for genetic manipulation has severely hampered a more detailed analysis of this organism (7, 8, † †).Here we present the genome sequence of L. bulgaricus strain ATCC11842, originally isolated from bulgarian yogurt by S. OrlaJensen in 1919 (unpublished work). The analysis of this genome and comparison to other members of the acidophilus complex and S. thermophilus (9) have contributed to a more complete understanding of its p...
We report here the complete genome sequence of the virulent strain JIP02/86 (ATCC 49511) of Flavobacterium psychrophilum, a widely distributed pathogen of wild and cultured salmonid fish. The genome consists of a 2,861,988-base pair (bp) circular chromosome with 2,432 predicted protein-coding genes. Among these predicted proteins, stress response mediators, gliding motility proteins, adhesins and many putative secreted proteases are probably involved in colonization, invasion and destruction of the host tissues. The genome sequence provides the basis for explaining the relationships of the pathogen to the host and opens new perspectives for the development of more efficient disease control strategies. It also allows for a better understanding of the physiology and evolution of a significant representative of the family Flavobacteriaceae, whose members are associated with an interesting diversity of lifestyles and habitats.
Background Propionibacterium freudenreichii is essential as a ripening culture in Swiss-type cheeses and is also considered for its probiotic use [1]. This species exhibits slow growth, low nutritional requirements, and hardiness in many habitats. It belongs to the taxonomic group of dairy propionibacteria, in contrast to the cutaneous species P. acnes. The genome of the type strain, P. freudenreichii subsp. shermanii CIRM-BIA1 (CIP 103027T), was sequenced with an 11-fold coverage.Methodology/Principal FindingsThe circular chromosome of 2.7 Mb of the CIRM-BIA1 strain has a GC-content of 67% and contains 22 different insertion sequences (3.5% of the genome in base pairs). Using a proteomic approach, 490 of the 2439 predicted proteins were confirmed. The annotation revealed the genetic basis for the hardiness of P. freudenreichii, as the bacterium possesses a complete enzymatic arsenal for de novo biosynthesis of aminoacids and vitamins (except panthotenate and biotin) as well as sequences involved in metabolism of various carbon sources, immunity against phages, duplicated chaperone genes and, interestingly, genes involved in the management of polyphosphate, glycogen and trehalose storage. The complete biosynthesis pathway for a bifidogenic compound is described, as well as a high number of surface proteins involved in interactions with the host and present in other probiotic bacteria. By comparative genomics, no pathogenicity factors found in P. acnes or in other pathogenic microbial species were identified in P. freudenreichii, which is consistent with the Generally Recognized As Safe and Qualified Presumption of Safety status of P. freudenreichii. Various pathways for formation of cheese flavor compounds were identified: the Wood-Werkman cycle for propionic acid formation, amino acid degradation pathways resulting in the formation of volatile branched chain fatty acids, and esterases involved in the formation of free fatty acids and esters.Conclusions/SignificanceWith the exception of its ability to degrade lactose, P. freudenreichii seems poorly adapted to dairy niches. This genome annotation opens up new prospects for the understanding of the P. freudenreichii probiotic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.