1 Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9 2 Институт проблем машиноведения РАН (ИПМаш РАН), Российская Федерация, 199178, Санкт-Петербург, Большой пр. В. О., 61Рассматривается контейнер в форме параллелепипеда, полностью заполненный идеальной несжимаемой жидкостью. Контейнер закрыт упругой крышкой, которая моделируется мем-браной или пластиной постоянной толщины. Остальные грани контейнера недеформируемы. Построен спектр частот малых свободных колебаний крышки с учетом присоединенной массы жидкости, движение которой предполагается потенциальным. Основная особенность постанов-ки задачи заключается в том, что при колебаниях объем жидкости под крышкой не меняется. В результате форма прогиба крышки должна удовлетворять уравнению связи, вытекающему из условия сохранения объема жидкости под крышкой. Библиогр. 11 назв. Ил. 5.Ключевые слова: мембрана, пластина, несжимаемая жидкость в контейнере, свободные колебания со связью.1. Введение. Рассматриваемая модельная задача относится к обширному клас-су задач динамической гидроупругости. К этим задачам приходим в судостроении, авиации, при транспортировке жидкостей, при описании природных явлений и во многих других случаях. Различные подходы к решению таких задач, а также обшир-ную библиографию можно найти в монографиях [1][2][3][4]. В качестве первых исследо-ваний назовем работу Рэлея [5] о волнах в бесконечной пластине, контактирующей с жидкостью, и работу Лэмба [6] о колебаниях круглой пластины в воде. Колеба-ния упругих тел в сжимаемой жидкости сопровождаются излучением звуковых волн [4], колебания пластин на поверхности жидкости порождают поверхностные волны [7]. Эти волны уносят энергию колебаний, что приводит к комплексному спектру. Спектр частот колебаний упругих контейнеров, содержащих идеальную несжимае-мую жидкость, является вещественным и дискретным [1]. При этом, как правило, рассматриваются задачи, в которых жидкость имеет свободную поверхность [8, 9].Ниже рассматривается контейнер в форме прямоугольного параллелепипеда, полностью заполненный несжимаемой жидкостью и закрытый упругой прямоуголь-ной крышкой. Крышка моделируется упругой мембраной или пластиной с шарнирно опертыми сторонами. Изучается спектр частот свободных колебаний этой крышки (вместе с жидкостью) при условии, что при колебаниях объем жидкости под крыш-кой не меняется. Это условие порождает связь, которой должна удовлетворять форма прогиба крышки. При наличии аналогичной связи на форму прогиба также построен спектр частот колебаний струны и балки.Близкая постановка задачи принята в [10]. В ней ограничение на форму прогиба крышки (пластины) не вводится, однако рассмотрение графиков собственных функ-ций, приведенных в [10], говорит о том, что условие сохранения объема жидкости под крышкой выполнено. В рассматриваемых задачах предполагается, что характерный период свободных колебаний существенно больше времени пробега волны объемной деформации жидкости. Поэтому жидкость считается несжимаемой. * Работа выполнена при ф...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.