This paper presents empirical research that supports territorial approaches to tourism product development that ground tourism in science, as a mechanism to support sustainable tourism heritage conservation goals. Scientific Tourism (ST), in this context, builds on the scientific heritage of a geography, matching researchers with local actors and tourists, through a five-stage iterative process that leads to new scientific knowledge, advancing theory and building relevance for communities through socio-cultural and economic development. This article focuses on the initial stage of the ST product development process, documenting empirical research conducted within the geographies surrounding the Palena River watershed in the Aysén Region of Chilean Patagonia. Both geo-structured literature review methods and results are presented and discussed to illustrate how the outcomes, including a series of maps, can inform and ground actors’ processes of heritage resource identification, justification, conservation, and exhibition, through the development of pilot ST initiatives within the territory. Similar research approaches may prove valuable for other low-density and peripheral geographies that share an interest in grounding tourism on the science taking place within their geography.
Natural disturbance processes such as volcanic eruptions, fire and human activities are important vegetation drivers in north Patagonia. Here, we tested the impact of volcanic ash fall and fire on vegetation composition analysing two sediment records, Lake Avutarda and Lake Bruja, located in the forest-steppe transition at 40°S. In addition, our analysis provides the first account on the history of Nothofagus alpina at its eastern distribution limits. Our results comprise the last 3000 years, indicating the persistence of the vegetation despite evident volcanic activity documented by numerous tephra layers in both records. Eleven fire episodes were identified, while redundancy analysis indicates a non-significant influence of fire activity on the vegetation. The population increase of Nothofagus alpina represents the most important change in vegetation composition in the last three millennia. We speculate that the presumed change in climate, which led to the expansion of Austrocedrus chilensis south of the study area, also caused the increase of Nothofagus alpina populations in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.