Metformin before surgery did not significantly affect Ki-67 overall, but showed significantly different effects according to insulin resistance, particularly in luminal B tumors. Our findings warrant further studies of metformin in breast cancer with careful consideration to the metabolic characteristics of the study population.
Epidemiologic data support an inverse association between green tea intake and breast cancer risk. Greenselect Phytosome (GSP) is a lecithin formulation of a caffeine-free green tea catechin extract. The purpose of the study was to determine the tissue distribution of epigallocatechin-3-O-gallate (EGCG) and its effect on cell proliferation and circulating biomarkers in breast cancer patients. Twelve early breast cancer patients received GSP 300 mg, equivalent to 44.9 mg of EGCG, daily for 4 weeks prior to surgery. The EGCG levels were measured before (free) and after (total) enzymatic hydrolysis by HPLC-MS/MS in plasma, urine, breast cancer tissue, and surrounding normal breast tissue. Fasting blood samples were taken at baseline, before the last administration, and 2 hours later. Repeated administration of GSP achieved levels of total EGCG ranging from 17 to 121 ng/mL in plasma. Despite a high between-subject variability, total EGCG was detectable in all tumor tissue samples collected up to 8 ng/g. Median total EGCG concentration was higher in the tumor as compared with the adjacent normal tissue (3.18 ng/g vs. 0 ng/g, = 0.02). Free EGCG concentrations ranged from 8 to 65.8 ng/mL in plasma ( between last administration and 2 hours after <0.001). Free EGCG plasma levels showed a significant positive correlation with the Ki-67 decrease in tumor tissue ( = 0.02). No change in any other biomarkers was noted, except for a slight increase in testosterone levels after treatment. Oral GSP increases bioavailability of EGCG, which is detectable in breast tumor tissue and is associated with antiproliferative effects on breast cancer tissue. .
Treatment of diabetics with metformin is associated with decreased breast cancer risk in observational studies, but it remains unclear if this drug has clinical antineoplastic activity. In a recent presurgical trial, we found a heterogeneous effect of metformin on breast cancer proliferation (ki-67) depending upon insulin resistance (HOMA index). Here, we determined the associations of additional serum biomarkers of insulin resistance, tumor subtype, and drug concentration with ki-67 response to metformin. Two-hundred non-diabetic women were randomly allocated to metformin (850 mg/bid) or placebo for 4 weeks prior to breast cancer surgery. The ki-67 response to metformin was assessed comparing data obtained from baseline biopsy (ki-67 and tumor subtype) and serum markers (HOMA index, C-peptide, IGF-I, IGFBP-1, IGFBP-3, free IGF-I, hs-CRP, adiponectin) with the same measurements at definitive surgery. For patients with a blood sample taken within 24 h from last drug intake, metformin level was measured. Compared with placebo, metformin significantly decreased ki-67 in women with HOMA > 2.8, those in the lowest IGFBP-1 quintile, those in the highest IGFBP-3 quartile, those with low free IGF-I, those in the top hs-CRP tertile, and those with HER2-positive tumors. In women with HOMA index > 2.8, drug levels were positively correlated with the ki-67 decrease, whereas no trend was noted in women with HOMA < 2.8 (p-interaction = 0.07). At conventional antidiabetic doses, the effect of metformin on tumor ki-67 of non-diabetic breast cancer patients varies with host and tumor characteristics. These findings are relevant to design breast cancer prevention and treatment trials with metformin.Electronic supplementary materialThe online version of this article (doi:10.1007/s10549-014-3141-1) contains supplementary material, which is available to authorized users.
Tamoxifen dosage is based on the one-dose-fits-all approach. The anticancer effect of tamoxifen is believed to be due to the metabolites, 4-hydroxytamoxifen (4OHtam), and 4-hydroxy-N-desmethyltamoxifen (4OHNDtam/endoxifen). These demethylated metabolites of tamoxifen have been associated with its side effects, whereas the effect mediated by tamoxifen-N-oxide (tamNox) is still poorly understood. Our objective was to improve the therapeutic index of tamoxifen by personalizing its dosage and maintaining serum tamoxifen metabolite concentrations within a target range. We examined the levels of tamoxifen, 4OHtam, 4OHNDtam, N-desmethyltamoxifen (NDtam), N-desdimethyltamoxifen (NDDtam), and tamNox in serum and in breast tumors specimens of 115 patients treated with 1, 5 or 20 mg/day of tamoxifen for 4 weeks before surgery in a randomized trial. Furthermore, the metabolism of tamNox in MCF-7 breast cancer cells was also studied. The concentrations of tamoxifen and its metabolites in tumor tissues were significantly correlated to their serum levels. Tumor tissue levels were 5–10 times higher than those measured in serum, with the exception of tamNox. In MCF-7 cells, tamNox was converted back to tamoxifen. In contrast to the tissue distribution of tamNox, the concentrations of 4OHtam and 4OHNDtam in tumor tissues corresponded to their serum levels. The results suggest that implementation of therapeutic drug monitoring may improve the therapeutic index of tamoxifen. Furthermore, the tissue distribution of tamNox deviated from that of the other tamoxifen metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.