It is widely known that nervous and muscular systems work together and that they are strictly dependent in their structure and functions. Consequently, muscles undergo macro and microscopic changes with subsequent alterations after a central nervous system (CNS) disease. Despite this, only a few researchers have addressed the problem of skeletal muscle abnormalities following CNS diseases. The purpose of this review is to summarize the current knowledge on the potential mechanisms responsible for changes in skeletal muscle of patients suffering from some of the most common CSN disorders (Stroke, Multiple Sclerosis, Parkinson’s disease). With this purpose, we analyzed the studies published in the last decade. The published studies show an extreme heterogeneity of the assessment modality and examined population. Furthermore, it is evident that thanks to different evaluation methodologies, it is now possible to implement knowledge on muscle morphology, for a long time limited by the requirement of muscle biopsies. This could be the first step to amplify studies aimed to analyze muscle characteristics in CNS disease and developing rehabilitation protocols to prevent and treat the muscle, often neglected in CNS disease.
Long-term disability caused by stroke is largely due to an impairment of motor function. The functional consequences after stroke are caused by central nervous system adaptations and modifications, but also by the peripheral skeletal muscle changes. The nervous and muscular systems work together and are strictly dependent in their structure and function, through afferent and efferent communication pathways with a reciprocal “modulation.” Knowing how altered interaction between these two important systems can modify the intrinsic properties of muscle tissue is essential in finding the best rehabilitative therapeutic approach. Traditionally, the rehabilitation effort has been oriented toward the treatment of the central nervous system damage with a central approach, overlooking the muscle tissue. However, to ensure greater effectiveness of treatments, it should not be forgotten that muscle can also be a target in the rehabilitation process. The purpose of this review is to summarize the current knowledge about the skeletal muscle changes, directly or indirectly induced by stroke, focusing on the changes induced by the treatments most applied in stroke rehabilitation. The results of this review highlight changes in several muscular features, suggesting specific treatments based on biological knowledge; on the other hand, in standard rehabilitative practice, a realist muscle function evaluation is rarely carried out. We provide some recommendations to improve a comprehensive muscle investigation, a specific rehabilitation approach, and to draw research protocol to solve the remaining conflicting data. Even if a complete multilevel muscular evaluation requires a great effort by a multidisciplinary team to optimize motor recovery after stroke.
Botulinum toxin type A (BoNT-A) is the treatment of choice for focal spasticity, with a concomitant effect on pain reduction and improvement of quality of life (QoL). Current evidence of its efficacy is based mainly on post stroke spasticity. This study aims to clarify the role of BoNT-A in the context of non-stroke spasticity (NSS). We enrolled 86 patients affected by multiple sclerosis, spinal cord injury, and traumatic brain injury with clinical indication to perform BoNT-A treatment. Subjects were evaluated before injection and after 1, 3, and 6 months. At every visit, spasticity severity using the modified Ashworth scale, pain using the numeric rating scale, QoL using the Euro Qol Group EQ-5D-5L, and the perceived treatment effect using the Global Assessment of Efficacy scale were recorded. In our population BoNT-A demonstrated to have a significant effect in improving all the outcome variables, with different effect persistence over time in relation to the diagnosis and the number of treated sites. Our results support BoNT-A as a modifier of the disability condition and suggest its implementation in the treatment of NSS, delivering a possible starting point to generate diagnosis-specific follow-up programs.Clinical trial identifierNCT04673240.
BACKGROUND: Adherence to treatment is one of the most common problems in patients suffering from chronic disease such as osteoporosis, and special commitment is required to patients, especially regarding rehabilitation. There is increasing evidence that physical interventions aimed at relieving pain and reducing physical impairments could play a crucial role in improving the quality of life and reducing the risk of fractures in patients with severe osteoporosis. OBJECTIVE: The aim of this study was to assess the compliance and determine the acceptability of a home-self-managed exercises program in patients with vertebral fractures, one of the most frequent and serious consequences of osteoporosis. METHODS: We conducted a retrospective observational study of patients undergoing a home exercise program, monitoring them with clinical scales, questionnaires, and routine visits. RESULTS: 62.86% of the patients were compliant with the treatment; the absence of supervision by health personnel was the primary cause of non-compliance, followed by the lack of time and the lack of motivation. Compliant patients showed a significant reduction in lumbar pain (p 0.011), an improvement in posture with a reduction of dorsal kyphosis (occipital-wall distance T0-T1, p-value = 0.02) and an improvement in QoL (p-value = 0.001) and physical performance at the 20 m walking test (p-value = 0.003). CONCLUSIONS: A home exercise program is feasible and could improve signs and symptoms in patients with vertebral fractures due to OP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.