Highly sensitive permeation measurements are crucial for the characterization and development of polymeric substrates for flexible display applications. In particular, organic light-emitting devices require substrates with extremely low permeation rates for water and oxygen. Here we demonstrate a concept for measuring ultralow permeation rates. The amount of oxidative degradation in a thin Ca sensor is monitored by in situ resistance measurements. The benefits of this technique are demonstrated for polyester foils with single- and double-sided barrier coatings. A sensitivity limit is imposed by the quality of the encapsulation. The resulting base line contribution to the water vapor transmission rate of a glass reference is below 10−6 g/m2 day at accelerated test conditions.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
We report an experimental investigation of the dephasing of excitons and multiexcitons in technologically relevant undoped and p-doped InAs/GaAs dot-in-a-well structures emitting near 1.3 m wavelength. Using a transient four-wave mixing technique in heterodyne detection, we measured the excitonic dephasing due to phonon coupling in the temperature range from 5 to 300 K, and the multiexcitonic dephasing at low temperature by electrically injecting carriers through a p-i-n diode structure. While the temperature-dependent excitonic dephasing is found to be similar to previous studies, the contribution from electrically injected carriers is weaker in these dot-in-a-well systems due to a reduced pure dephasing from Coulomb interaction with carriers in the barrier material. Moreover, multiexcitonic transitions contribute with a subpicosecond dephasing, corresponding to a homogeneous broadening in the meV range. In the p-doped structure, positively charged multiexcitons are formed due to the built-in hole reservoir, which show a dominating dephasing component in the subpicosecond range. However, a weaker component in the 10 ps range is observed and attributed to final states with spin-forbidden relaxation.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.