PurposeWeight loss is a well-recognized prognostic parameter for survival of lung cancer patients. Computerized-tomography (CT)-based analysis of body composition and blood-based metabolic evaluation are promising prognostic tools. We aimed to assess the correlation between albumin, body mass index (BMI), skeletal muscle mass index (SMI), fat-free mass index (FFMI), fat mass index (FMI) and weight change, as well as their correlation with survival of lung cancer patients on nivolumab treatment.MethodsData were retrospectively collected. Weight was measured at a diagnosis of stage 4 disease and before start of nivolumab. Albumin levels were measured before starting nivolumab. BMI, SMI, FFMI, and FMI were evaluated from CT scans performed at start of nivolumab. Overall survival (OS) was from starting of nivolumab to death or censured at last follow-up. Statistical analysis was done to identify correlation between the various factors and between those factors and survival.ResultsForty-six patients with advanced non-small cell lung cancer (NSCLC) were included. Median follow-up was 22 months. Pathology was Adenocarcinoma/Squamous/non-other specified in 25/15/6 respectively. All patients received nivolumab as an advanced-line treatment for stage IV NSCLC. We observed a significant correlation of weight loss (P=0.01, HR=2.85) and albumin (P=0.043, HR=0.34) with OS in multivariate analysis. A significant correlation was found between BMI to SMI, FFMI, FMI, and weight change.ConclusionWeight loss and low albumin levels are significant negative prognostic factors for NSCLC patients on immunotherapy. CT-based parameters of body composition remain to be proven as more reliable than standard clinical parameters.
Body mass index (BMI) is a main indicator of obesity and its association with breast cancer is well established. However, little is known in the metastatic setting, especially in HER2‐positive patients. We assessed the influence of BMI on clinical outcomes of patients treated with pertuzumab and/or trastuzumab emtansine (T‐DM1) for HER2+ metastatic breast cancer (mBC). BMI was addressed as a categorical variable, being classified on the basis of the following ranges, that is, 18.5–24.9, 25–29.9, and 30.0–34.9, namely, normal weight, overweight, and Class I obesity. The outcomes chosen were progression‐free survival to first‐line chemotherapy (PFS1) and overall survival (OS). Overall (N = 709), no impact of BMI was observed on PFS1 (p = .15), while BMI ≥ 30 was associated with worse OS (p = .003). In subjects who progressed to first line (N = 575), analyzing data across PFS1 quartiles and strata of disease burden, BMI predicted lower PFS1 in patients within the I PFS1 quartile and with the lowest disease burden (p = .001). Univariate analysis showed a detrimental effect of BMI ≥ 30 on OS for women within the I PFS1 quartile (p = .03). Results were confirmed in multivariate analysis. According to PFS1 quartiles a higher percentage of patients with high BMI and low disease burden progressed within 6 months of therapy. The effect of BMI on prognosis was also confirmed in multivariate analysis of OS for overall population. In our cohort, a BMI ≥ 30 correlated with worse OS in patients with HER2+ mBC who received pertuzumab and/or T‐DM1 but had no impact on PFS to first line. BMI predicted worse I PFS1 quartile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.