Constrained aminols from oxazanorbornene derivatives have the geometrical features to be used as β-turn inducers. Four different stereoisomers were prepared and spectroscopically characterized (MD calculations, NMR-titration and VT-NMR experiments). Temperature coefficients in DMSO are indicative for the existence of an intramolecular hydrogen bond. Chirooptical properties revealed a β-turn arrangement of all the synthesized compounds, where, depending on the absolute configuration of the cyclopentane spacer, they can be labeled as left- or right-handed turns.
Molecularly imprinted polymers (MIPs) are tailor‐made synthetic antibodies possessing specific binding cavities designed for a target molecule. Currently, MIPs for protein targets are synthesized by imprinting a short surface‐exposed fragment of the protein, called epitope or antigenic determinant. However, finding the epitope par excellence that will yield a peptide “synthetic antibody” cross‐reacting exclusively with the protein from which it is derived, is not easy. We propose a computer‐based rational approach to unambiguously identify the “best” epitope candidate. Then, using Saturation Transfer Difference (STD) and WaterLOGSY NMR spectroscopies, we prove the existence of specific binding sites created by the imprinting of this peptide epitope in the MIP nanogel. The optimized MIP nanogel could bind the epitope and cognate protein with a high affinity and selectivity. The study was performed on Hepatitis A Virus Cell Receptor‐1 protein, also known as KIM‐1 and TIM‐1, for its ubiquitous implication in numerous pathologies.
Polymers that are biocompatible and degradable are desired for tissue engineering approaches in the treatment of vascular diseases, especially for those involving small-diameter blood vessels. Herein, we report the compatibility of a newly developed glycerol-based aliphatic polycarbonate possessing simple methoxy side groups, named poly(5-methoxy-1,3-dioxan-2one) (PMDO), with blood cells and plasma proteins as well as its susceptibility to hydrolysis. As a consequence of the organocatalytic ringopening polymerization (ROP) of a methoxy-functionalized cyclic carbonate derived from glycerol, PMDO with a sufficiently high molecular weight (M n 14 kg/mol) and a narrow distribution (D̵ M 1.12) was obtained for evaluation as a bulk biomaterial. This study demonstrates for the first time the organocatalytic ROP of a glycerol-based cyclic carbonate in a controlled manner. Compared with the clinically applied aliphatic polycarbonate poly(trimethylene carbonate) (PTMC), PMDO inhibits platelet adhesion by 33% and denaturation of fibrinogen by 23%. Although the wettability of PMDO based on water contact angle was almost comparable to those of PTMC and poly(ethylene terephthalate), the reason for the inhibited platelet adhesion and protein denaturation appeared to be related to the presence of specific hydrated water formed in the hydrated polymer. The improved hydration of PMDO also enhanced the susceptibility to hydrolysis, with PMDO demonstrating a slightly higher hydrolytic property than PTMC. This simple glycerol-based aliphatic polycarbonate has the following benefits: bio-based characteristics of glycerol and improved blood compatibility and hydrolytic biodegradability stemming from moderate hydration of the methoxy side groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.