The structure of the telomeres of four aphid species (Acyrthosiphon pisum, Megoura viciae, Myzus persicae and Rhopalosiphum padi) was evaluated by Southern blotting and fluorescent in situ hybridization, revealing that each chromosomal end consists of a (TTAGG)(n) repeat. The presence of a telomerase coding gene has been verified successively in the A. pisum genome, revealing that aphid telomerase shares sequence identity ranging from 12% to 18% with invertebrate and vertebrate homologues, and possesses the two main domains involved in telomerase activity. Interestingly, telomerase expression has been verified in different somatic tissues suggesting that, in aphids, telomerase activity is not as restricted as in human cells. The study of telomeres in a M. persicae strain with a variable chromosome number showed that aphid telomerase can initiate the de novo synthesis of telomere sequences at internal breakpoints, resulting in the stabilization of chromosomal fragments.
Analysis of the holocentric mitotic chromosomes of the peach-potato aphid, Myzus persicae (Sulzer), from clones labelled 50, 51 and 70 revealed different chromosome numbers, ranging from 12 to 14, even within each embryo, in contrast to the standard karyotype of this species (2n = 12). Chromosome length measurements, combined with fluorescent in situ hybridization experiments, showed that the observed chromosomal mosaicisms are due to recurrent fragmentations of chromosomes X, 1 and 3. Contrary to what has generally been reported in the literature, X chromosomes were frequently involved in recurrent fragmentations, in particular at their telomeric ends opposite to the nucleolar organizer region. Supernumerary B chromosomes have been also observed in clones 50 and 51. The three aphid clones showed recurrent fissions of the same chromosomes in the same regions, thereby suggesting that the M. persicae genome has fragile sites that are at the basis of the observed changes in chromosome number. Experiments to induce males also revealed that M. persicae clones 50, 51 and 70 are obligately parthenogenetic, arguing that the reproduction by apomictic parthenogenesis favoured the stabilization and inheritance of the observed chromosomal fragments.
Analysis of holocentric mitotic metaphase chromosomes of the peach-potato aphid Myzus persicae (Sulzer) clone 33H revealed different chromosome numbers, ranging from 12 to 17 within each embryo, in contrast to the standard karyotype of this species (2n = 12). Chromosome length measurements revealed that the observed chromosomal mosaicism is the result of recurrent fragmentations of chromosomes X, 1 and 3 because of fragile sites or hot spots of recombination. Fluorescent in situ hybridization experiments showed that X chromosomes were frequently involved in recurrent fragmentations, in particular their telomeric end opposite to the nucleolar organizer region. Experiments to induce males showed that M. persicae clone 33H is obligately parthenogenetic. The reproduction by apomictic parthenogenesis, together with a high telomerase expression that stabilized the chromosomes involved in the fragmentations observed in the M. persicae clone 33H, appears to favour the stabilization of the observed chromosome instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.