Paracentrotus lividus sea urchin nectin (Pl-nectin) is an extracellular matrix (ECM) protein of the sea urchin embryo on the apical surface of the ectoderm and has been shown to be an adhesive substrate for embryonic cells. A monoclonal antibody (McAb) to Pl-nectin was generated that inhibits the adhesion of blastula cells to Pl-nectin-coated substrates in an in vitro functional assay. To examine for possible in vivo functions of Pl-nectin, Fab fragments (Fabs) of Pl-nectin McAb were added to early blastulae. Ingression of primary mesenchyme cells was not affected by Fabs. As control embryos reached the pluteus stage, treated embryos showed a severe inhibition of skeletal elongation and patterning. When the Fabs were injected directly into the blastocoel, even at higher concentration than was applied externally, skeletogenesis was normal. Therefore, the effect of the antibody on spiculogenesis was indirect. The treatment was partially reversible as embryos eventually seemed to recover and elongate spicules, although with an incorrect patterning. Migration of pigment cells was also affected by the Fabs, since they did not disperse throughout the ectoderm but remained clustered in ectopic areas. In contrast, the development of endoderm structures was not affected. Our results indicate that in the sea urchin embryo the appropriate contact of ectodermal cells with outer ECM components is essential for the correct morphogenesis of inner mesodermal structures.
The purification, biochemical characterization and functional features of a novel extracellular matrix protein are described. This protein is a component of the basal lamina found in embryos from the sea urchin species Paracentrotus lividus and Hemicentrotus pulcherrimus. The protein has been named Pl-200K or Hp-200K, respectively, because of the species from which it was isolated and its apparent molecular weight in SDS-PAGE under reducing conditions. It has been purified from unfertilized eggs where it is found packed within cytoplasmic granules, and has different binding affinities to type I collagen and heparin, as assessed by affinity chromatography columns. By indirect immunofluorescence experiments it was shown that, upon fertilization, the protein becomes extracellular, polarized at the basal surface of ectoderm cells, and on the surface of primary mesenchyme cells at the blastula and gastrula stages. The protein serves as an adhesive substrate, as shown by an in vitro binding assay where cells dissociated from blastula embryos were settled on 200K protein-coated substrates. To examine the involvement of the protein in morphogenesis of sea urchin embryo, early blastula embryos were microinjected with anti-200K Fab fragments and further development was followed. When control embryos reached the pluteus stage, microinjected embryos showed severe abnormalities in arms and skeleton elongation and patterning. On the basis of current results, it was proposed that 200K protein is involved in the regulation of sea urchin embryo skeletogenesis.
Fibronectin-like proteins were purified from ovaries of the sea urchin species, Paracentrotus lividus (PI), Sphaerechinus granularis (Sg), Arbacia lixula (Al), Pseudocentrotus depressus (Pd), and Anthocidaris crassispina (Ac), by gelatin-Sepharose affinity chromatography. The major component had a molecular mass of 180 kDa and was eluted by 1 M NaCl or 8 M urea, depending on the species used. By substrate adhesion assay, we tested the biological activity of the 180 kDa protein purified from Paracentrotus lividus (P1-180K) and showed that it promotes the adhesion of homologous embryonic cells to the substrate. An antiserum, developed against Temnopleurus hardwickii fibronectin-like protein (Th-180K), was used in Western blots of the proteins purified from the five species. The antibody cross-reacted with Pl-180K, Pd-180K and Ac-180K. A peptide map of P1-180K, obtained by V8 protease partial digestion, was compared with those obtained from the other four proteins and showed an homology between 40 and 56%. This report confirms that fibronectin-like proteins can be purified from sea urchins on the basis of their binding to gelatin-Sepharose; the proteins differ for their binding affinity to gelatin and share different epitopes, suggesting that they are members of a sea urchin fibronectin super family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.