In 2012, an extreme summer drought induced species-specific die-back in woody species in Northeastern Italy. Quercus pubescens and Ostrya carpinifolia were heavily impacted, while Prunus mahaleb was largely unaffected. By comparing seasonal changes in isotopic composition of xylem sap, rainfall and deep soil samples, we show that P. mahaleb has a deeper root system than the other two species. This morphological trait allowed P mahaleb to maintain higher water potential (Ψ), gas exchange rates and non-structural carbohydrates content (NSC) throughout the summer, when compared with the other species. More favourable water and carbon states allowed relatively stable maintenance of stem hydraulic conductivity (k) throughout the growing season. In contrast, in Quercus pubescens and Ostrya carpinifolia, decreasing Ψ and NSC were associated with significant hydraulic failure, with spring-to-summer k loss averaging 60%. Our data support the hypothesis that drought-induced tree decline is a complex phenomenon that cannot be modelled on the basis of single predictors of tree status like hydraulic efficiency, vulnerability and carbohydrate content. Our data highlight the role of rooting depth in seasonal progression of water status, gas exchange and NSC, with possible consequences for energy-demanding mechanisms involved in the maintenance of vascular integrity.
Programmed cell death (PCD) is a finely tuned process of multicellular organisms. In higher plants, PCD regulates many developmental processes and the response of host plants to incompatible pathogens (hypersensitive response). Four types of PCD have been described in plants, mainly associated to vacuole rupture, that is followed by the appearance of the typical PCD hallmarks (i.e. nuclear DNA fragmentation and cell shrinkage). However, in some cases vacuole collapse is preceded by an early alteration of other subcellular organelles, such as mitochondria. In particular, the central role played by mitochondria in PCD has been largely recognised in animal cells. This review deals with the involvement of mitochondria in the manifestation of plant PCD, in comparison to that described in animal PCD. The main hallmark, connecting animal and plant PCD via mitochondria, is represented by the release of cytochrome c and possibly other chemicals such as nucleases, which may be accomplished by different mechanisms, involving both swelling and non-swelling of the organelles
The xylem is a complex system that includes a network of dead conduits ensuring long-distance water transport in plants. Under ongoing climate changes, xylem embolism is a major and recurrent cause of drought-induced tree mortality. Non-structural carbohydrates (NSC) play key roles in plant responses to drought and frost stress, and several studies putatively suggest their involvement in the regulation of xylem water transport. However, a clear picture on the roles of NSCs in plant hydraulics has not been drawn to date. We summarize the current knowledge on the involvement of NSCs during embolism formation and subsequent hydraulic recovery. Under drought, sugars are generally accumulated in xylem parenchyma and in xylem sap. At drought-relief, xylem functionality is putatively restored in an osmotically driven process involving wood parenchyma, xylem sap and phloem compartments. By analyzing the published data on stem hydraulics and NSC contents under drought/frost stress and subsequent stress relief, we found that embolism build-up positively correlated to stem NSC depletion, and that the magnitude of post-stress hydraulic recovery positively correlated to consumption of soluble sugars. These findings suggest a close relationship between hydraulics and carbohydrate dynamics. We call for more experiments on hydraulic and NSC dynamics in controlled and field conditions.
Some plant species are capable of significant reduction of xylem embolism during recovery from drought despite stem water potential remains negative. However, the functional biology underlying this process is elusive. We subjected poplar trees to drought stress followed by a period of recovery. Water potential, hydraulic conductivity, gas exchange, xylem sap pH, and carbohydrate content in sap and woody stems were monitored in combination with an analysis of carbohydrate metabolism, enzyme activity, and expression of genes involved in sugar metabolic and transport pathways. Drought resulted in an alteration of differential partitioning between starch and soluble sugars. Upon stress, an increase in the starch degradation rate and the overexpression of sugar symporter genes promoted the efflux of disaccharides (mostly maltose and sucrose) to the apoplast. In turn, the efflux activity of the sugar‐proton cotransporters caused a drop in xylem pH. The newly acidic environment induced the activity of apoplastic invertases leading to the accumulation of monosaccharides in the apoplast, thus providing the main osmoticum necessary for recovery. During drought and recovery, a complex network of coordinated molecular and biochemical signals was activated at the interface between xylem and parenchyma cells that appeared to prime the xylem for hydraulic recovery.
Soybean suspension cell cultures were treated by H2O2 or nitric oxide (NO), to assess the mechanism leading to programmed cell death (PCD). Hydrogen peroxide (5 mM) induced PCD. Cells become necrotic at 20 mM H2O2, with cells exhibiting intermediate hallmarks before that (necrapoptotic cells). The level of ATP and of glucose-6-phosphate remained constant in cells undergoing PCD, while it decreased significantly in the necrotic ones. Mitochondria, isolated from 5 mM H2O2-treated (apoptotic) cells, showed that succinate-dependent oxygen consumption was slightly uncoupled, and the electrical potential difference (delta psi) weakly decreased. The addition of KCl to the delta psi formed determined a partial dissipation, which was higher than the dissipation observed in mitochondria from control cells. The addition of cyclosporin A (CsA) to de-energized mitochondria also induced delta psi formation, due to a K+ efflux from the matrix, which was decreased in mitochondria from treated cells. The same pattern of response was also observed in mitochondria isolated from 1 mM sodium nitroprusside (NO)-treated cells, exhibiting apoptotic symptoms. In mitochondria isolated from 20 mM H2O2-treated (necrotic) cells, succinate-dependent oxygen consumption was completely uncoupled, delta psi generation significantly inhibited, and CsA-dependent delta psi formation prevented. In addition, mitochondria isolated from control cells still underwent swelling, which was partially or completely prevented in mitochondria isolated from apoptotic or necrotic cells, respectively. The moderate swelling was accompanied by a slight rupture of the outer membrane and by a release of cytochrome c. These results point to the involvement of a K(+)ATP channel during the manifestation of PCD induced by H2O2 or NO in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.