An alternative, and novel, explanation is that agonist binding stabilizes a higher affinity form of the receptor that is produced by a conformational change ("flip") that is separate from, and precedes, channel opening. Both the "interaction" scheme and the flip scheme describe our data well, but the latter has fewer free parameters and above all it offers a mechanism for the affinity increase. Distinguishing between the two mechanisms will be important for our understanding of the structural dynamics of activation in the nicotinic superfamily and is important for our understanding of mutations in these receptors.
Heteromeric glycine receptors mediate synaptic inhibition in the caudal areas of the adult mammalian central nervous system (CNS). These channels resemble other receptors in the nicotinic superfamily in that they are pentamers, but may differ in that they contain alpha and beta subunits in a 3:2 rather than a 2:3 ratio. Evidence in favor of a 3alpha:2beta stoichiometry of heteromeric glycine receptors comes from biochemical data and from the expression of chimeric subunits. We investigated this question using a potentially more direct approach and mutated the highly conserved hydrophobic residues in the middle (position 9') of the pore-lining domain. This mutation increases agonist potency in all channels in the nicotinic superfamily and its effects are in first approximation proportional to the number of mutant subunit incorporated into the receptor. We expressed in HEK 293 cells wild-type glycine alpha1beta receptors or receptors bearing the 9' mutation on either the alpha or the beta subunit, using an alpha:beta plasmid ratio of 1:40 in the transfection. This resulted in negligible levels of contamination by homomeric alpha1 receptors, as proven by low picrotoxin potency and by the extreme rarity of high conductances in single channel recording. Our data show that the effects of the 9' mutation on the receptor sensitivity to glycine were more marked when the alpha subunit bore the mutation. The magnitude of the leftward shift in the agonist dose-response curve for the two mutant combinations was in agreement with a subunit stoichiometry of 3alpha:2beta.
NMDA receptors have been shown to contribute to glutamate-evoked currents in oligodendrocytes. Activation of these receptors damages myelin in ischaemia, in part because they are more weakly blocked by Mg 2+ than are most neuronal NMDA receptors. This weak Mg 2+ block was suggested to reflect an unusual subunit composition including the NR2C and NR3A subunits. Here we expressed NR1/NR2C and triplet NR1/NR2C/NR3A recombinant receptors in HEK cells and compared their currents with those of NMDA-evoked currents in rat cerebellar oligodendrocytes. NR1/NR2C/3A receptors were less blocked by 2 mm Mg 2+ than were NR1/NR2C receptors (the remaining current was 30% and 18%, respectively, of that seen without added Mg 2+ ) and showed less channel noise, suggesting a smaller single channel conductance. NMDA-evoked currents in oligodendrocytes showed a Mg 2+ block (to 32%) similar to that observed for NR1/NR2C/NR3A and significantly different from that for NR1/NR2C receptors. Co-immunoprecipitation revealed interactions between NR1, NR2C and NR3A subunits in a purified myelin preparation from rat brain. These data are consistent with NMDA-evoked currents in oligodendrocytes reflecting the activation of receptors containing NR1, NR2C and NR3A subunits.
The GABA A antagonist SR-95531 (gabazine) is known to block glycine receptors, albeit with low affinity. We have studied the effect of SR-95531 on rat recombinant α1β glycine receptors expressed in human embryonic kidney (HEK293) cells by recording macroscopic currents elicited by rapid glycine application to outside-out patches. SR-95531 has a fast unbinding rate (k offSR , about 3000 s −1 ) and this means that the time course of its unbinding is comparable to the expected time course of the transmitter in the cleft. We also found that equilibrium applications of SR-95531 reduced the response to brief glycine applications by an amount inversely proportional to the duration of glycine application. The fast unbinding rate of SR-95531 from the glycine receptor will make it useful for establishing the time course of glycine concentration at glycinergic synapses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.