Roux-en-Y gastric bypass (RYGB) has become a prominent therapeutic option for long-term treatment of morbid obesity and type 2 diabetes mellitus (T2D). Cross talk and pathogenetic consequences of RYGB-induced profound effects on metabolism and gut microbiome are poorly understood. The aim of the present study therefore was to characterize intra-individual changes of gut microbial composition before and 3 months after RYGB by metagenomic sequencing in morbidly obese patients (body mass index (BMI)440 kg m À 2 ) with T2D. Subsequently, metagenomic data were correlated with clinical indices. Based on gene relative abundance profile, 1061 species, 729 genera, 44 phyla and 5127 KO (KEGG Orthology) were identified. Despite high diversity, bacteria could mostly be assigned to seven bacterial divisions. The overall metagenomic RYGB-induced shift was characterized by a reduction of Firmicutes and Bacteroidetes and an increase of Proteobacteria. Twenty-two microbial species and 11 genera were significantly altered by RYGB. Using principal component analysis, highly correlated species were assembled into two common components. Component 1 consisted of species that were mainly associated with BMI and C-reactive protein. This component was characterized by increased numbers of Proteobacterium Enterobacter cancerogenus and decreased Firmicutes Faecalibacterium prausnitzii and Coprococcus comes. Functional analysis of carbohydrate metabolism by KO revealed significant effects in 13 KOs assigned to phosphotransferase system. Spearmen's Rank correlation indicated an association of 10 species with plasma total-or low-density lipoprotein cholesterol, and 5 species with triglycerides. F. prausnitzii was directly correlated to fasting blood glucose. This is the first clinical demonstration of a profound and specific intra-individual modification of gut microbial composition by full metagenomic sequencing. A clear correlation exists of microbiome composition and gene function with an improvement in metabolic and inflammatory parameters. This will allow to develop new diagnostic and therapeutic strategies based on metagenomic sequencing of the human gut microbiome.
Obesity has become an epidemic problem in western societies, contributing to metabolic diseases, hypertension, and cardiovascular disease. Overweight and obesity are frequently associated with increased plasma levels of aldosterone. Recent evidence suggests that human fat is a highly active endocrine tissue. Therefore, we tested the hypothesis that adipocyte secretory products directly stimulate adrenocortical aldosterone secretion. Secretory products from isolated human adipocytes strongly stimulated steroidogenesis in human adrenocortical cells (NCI-H295R) with a predominant effect on mineralocorticoid secretion. Aldosterone secretion increased 7-fold during 24 h of incubation. This stimulation was comparable to maximal stimulation of these cells with forskolin (2 ؋ 10 ؊5 M). On the molecular level, there was a 10-fold increase in the expression of steroid acute regulatory peptide mRNA. This effect was independent of adipose angiotensin II as revealed by the stimulatory effect of fat cell-conditioned medium even in the presence of the angiotensin type 1 receptor antagonist, valsartan. None of the recently defined adipocytokines accounted for the effect. Mineralocorticoid-stimulating activity was heat sensitive and could be blunted by heating fat cell-conditioned medium to 99°C. Centrifugal filtration based on molecular mass revealed at least two releasing factors: a heat sensitive fraction (molecular mass >50 kDa) representing 60% of total activity, and an inactive fraction (molecular mass <50 kDa). However, the recovery rate increased to 92% when combining these two fractions, indicating the interaction of at least two factors. In conclusion, human adipocytes secrete potent mineralocorticoidreleasing factors, suggesting a direct link between obesity and hypertension.
WISP1 (Wnt1-inducible signaling pathway protein-1, also known as CCN4) is a member of the secreted extracellular matrix–associated proteins of the CCN family and a target gene of the Wingless-type (WNT) signaling pathway. Growing evidence links the WNT signaling pathway to the regulation of adipogenesis and low-grade inflammation in obesity. We aimed to validate WISP1 as a novel adipokine. Human adipocyte differentiation was associated with increased WISP1 expression and secretion. Stimulation of human macrophages with WISP1 led to a proinflammatory response. Circulating WISP1 and WISP1 subcutaneous adipose tissue expression were regulated by weight changes in humans and mice. WISP1 expression in visceral and subcutaneous fat tissue was associated with markers of insulin resistance and inflammation in glucose-tolerant subjects. In patients with nonalcoholic fatty liver disease, we found no correlation among disease activity score, liver fat content, and WISP1 expression. Insulin regulated WISP1 expression in adipocytes in vitro but had no acute effect on WISP1 gene expression in subcutaneous fat tissue in overweight subjects who had undergone hyperinsulinemic clamp experiments. The data suggest that WISP1 may play a role in linking obesity to inflammation and insulin resistance and could be a novel therapeutic target for obesity.
Here we have used gene-targeting to eliminate expression of smooth-muscle myosin heavy chain. Elimination of this gene does not affect expression of non-muscle myosin heavy chain, and knockout individuals typically survive for three days. Prolonged activation, by KCl depolarisation, of intact bladder preparations from wild-type neonatal mice produces an initial transient state (phase 1) of high force generation and maximal shortening velocity, which is followed by a sustained state (phase 2) characterized by low force generation and maximal shortening velocity. Similar preparations from knockout neonatal mice do not undergo phase 1, but exhibit a normal phase 2. We propose that, in neonatal smooth muscle phase 1 is generated by recruitment of smooth-muscle myosin heavy chain, whereas phase 2 can be generated by activation of non-muscle myosin heavy chain. We conclude that phase 1 becomes indispensable for survival and normal growth soon after birth, particularly for functions such as homeostasis and circulation.
Key Words: FABP4 Ⅲ heart failure Ⅲ adipocytes Ⅲ metabolic syndrome O besity is a major risk factor in the development of the metabolic syndrome and cardiovascular diseases and seems to be directly related to heart failure independently of other risk factors. 1 Indeed, a direct relationship between elevated body mass index and increased risk for heart failure has been demonstrated, without evidence of a threshold. 2 Several potential mechanisms are under discussion to explain this correlation, including hemodynamic changes with cardiac overload and left ventricular remodeling and lipid accumulation into the myocardium, leading to lipoapoptosis in cardiomyocytes. 3 These mechanisms, however, do not fully explain the development of heart dysfunction in obese subjects.Adipocytes are known to produce and release a wide variety of bioactive molecules into the bloodstream. 4 Based on these data, we have recently investigated whether secretory products from human adipocytes affect cardiac contractile function in an in vitro system of isolated rat cardiomyocytes. We have demonstrated that mature human adipocytes release substances that strongly and acutely suppress the contraction of cardiomyocytes by attenuating intracellular Ca 2ϩ levels. 5 Our previous findings have revealed a hitherto unknown acute depressant effect of adipocyte-derived factors on cardiac contraction, suggesting a new direct role of adipose tissue in the pathogenesis of myocardium dysfunction.Based on this initial work, we have further characterized cardiodepressant activity by fractionating adipocyte secretory products according to molecular weight and proteomic analysis, identifying adipocyte fatty acid-binding protein (FABP4) as the active agent. Fatty acid-binding proteins (FABPs) are members of a highly conserved family of cytosolic proteins with a molecular mass of 14 to 15 kDa found in different cell types, showing a high affinity for long-chain fatty acids and other hydrophobic ligands. 6 FABP4 is predominantly expressed in adipose tissue, and accounts for Ϸ1% of total cytosolic protein in human adipose tissue. 7 Cytoplasmic FABP4 is involved in trafficking intra-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.