Plutella xylostella (L.) is the most important pest of Brassicaceae worldwide, with a recent estimate of US$ 4-5 billion expenditure for the control of this insect. A case of very high resistance of this pest to chlorantraniliprole was recently associated with reduced efficacy in a Brazilian field of Brassica spp. Although diamide resistance has been characterized, the fitness of insects due to such resistance has yet to be examined. Therefore, in this study, biological parameters were assessed in both susceptible and resistant strains of P. xylostella subjected to sublethal chlorantraniliprole concentrations. The field strain showed high resistance to chlorantraniliprole (RR50=27,793-fold), although resistance rapidly decreased in the first generations, showing instability. The exposure of susceptible and resistant larvae to their respective LC1, LC10, and LC25 values led to an increased duration of the larval and pupae phases and reduced weight in both strains; however, no significant differences in pupal viability across the treatments were observed. The resistant insects presented significantly lower larval weight and fecundity and higher larval and pupal periods, hatchability, and male longevity when not exposed to chlorantraniliprole, suggesting a fitness cost associated with resistance. In addition, resistant females showed a significantly higher egg-laying period and longevity at LC25, whereas the males lived longer at LC1. Chlorantraniliprole negatively impacted the biological parameters of both strains tested, although these effects were more relevant to the resistant insects. Resistant P. xylostella showed negative and positive biological trade-offs when compared with the susceptible individuals in both the absence and presence of chlorantraniliprole. Despite the important role that these trade-offs may play in the evolution of resistance to chlorantraniliprole, practical applications still depend on such information as the dominance of fitness costs and resistance.
The interaction of Cry toxins from Bacillus thuringiensis in the midgut of some insect larvae determines their efficacies as insecticides, due to the expression and availability of sites of action of the toxin in the midgut. Researches point out cases of resistance to Cry toxin due to alterations in the binding sites in columnar cell membrane. We analyzed the effects of Cry1Ac toxin expressed by Bt-cotton plants on Alabama argillacea midgut morphophysiology clarifying in levels of morphological and ultrastructural. Larvae in the 4th instar of A. argillacea after 20 min from ingesting Bt-cotton leaves expressing 0.183 ng of Cry1Ac exhibited ultrastructural and morphological modifications in the columnar cells with significant changes in the mitochondrial polymorphism, cytoplasmic vacuolization, microvillus and basal labyrinth. Expressive morphological alterations were also observed in the goblet cells indicating that the columnar cells are not the only target of the Cry1Ac toxin. The regenerative cells did not modify their structures and exhibited decrease in regeneration capacity. In conclusion, the ingestion of 0.183 ± 0.077 ng of Cry1Ac was enough to promote alterations in the columnar and goblet cells, besides reducing significantly the number of regenerative cells, which may have contributed to larval death. Nevertheless, further studies are necessary to determine the true cause of death.
Spodoptera frugiperda is a major pest in several crops due to its polyphagous habit. Studies on the use of essential oils for pest control have been increasing over the years, presenting itself as a promising alternative with less environmental impact. Chemical profile evaluations of essential oils enable the knowledge and use of major compounds, providing a better understanding of their actions in the life history of insects. Thus, the study evaluated the effects of the major compounds limonene, trans-anethole and the combined effects upon nutrition, reproduction and testicular apoptosis in S. frugiperda. Larvae of third instar were submitted to the LD of the compounds by topical contact and 48 h later the amounts of lipids, proteins, total sugar and glycogen were evaluated. The testicular apoptosis was evaluated in the treated larvae after 48 h and the reproductive parameters were evaluated after adult emergence. All treatments reduced the amounts of lipid, protein, total sugar and glycogen when compared to control. The most significant results were obtained by the association of compounds. All treatments reduced the number of eggs, oviposition period and adult longevity when compared to control. There were no changes in the pre-oviposition and post-oviposition periods. Testicular apoptosis was observed in the limonene and in the combined treatments. It is concluded that limonene and trans-anethole, especially in association, cause adverse effects upon nutrition and reproduction in S. frugiperda, altering essential parameters for its survival and establishment on crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.